JHWCR

Journal of Health, Wellness and Community Research ISSN: 3007, 0570

OPEN ACCESS

OF EN OACCESS

Correspondence

☑ Sadaf Sarwar, sadafsarwarsgrh@gmail.com

Received 01, 06, 25

Accepted 27, 06, 2025

Authors' Contributions

Concept: SS; Design: SFR; Data Collection: MS; Analysis: AS; Drafting: MSN.

Copyrights

© 2025 Authors. This is an open, access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Declarations

No funding was received for this study. The authors declare no conflict of interest. The study received ethical approval. All participants provided informed consent.

"Click to Cite"

Type: Original Article
Published: 13 July 2025
Volume: III, Issue: VIII
DOI: https://doi.org/10.61919/p110gp22

Efficacy, Safety, and Tolerability of Tofacitinib in Patients with Rheumatoid Arthritis: A Multicentric Pakistani Study

Sadaf Sarwar¹, Sumaira Farman Raja¹, Madeeha Siddique¹, Aroosa Saleem², Muhammad Shiraz Niaz³, Adnan Khalid⁴

- 1 National Hospital and Medical Centre, Lahore, Pakistan
- 2 Family Hospital Mozang, Lahore, Pakistan
- 3 Sheikh Zayed Hospital, Rahim Yar Khan, Pakistan
- 4 Post Graduate Trainee Dermatology, Isra University Hyderabad

ABSTRACT

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and disability. Despite the availability of conventional and biologic DMARDs, cost, parenteral administration, and variable tolerability limit long-term disease control in low- and middle-income settings. To facitinib, an oral Janus kinase inhibitor, offers an alternative targeted synthetic therapy with demonstrated global efficacy. However, data from South Asian populations remain limited. Objective: To determine the efficacy, safety, and tolerability of tofacitinib in Pakistani patients with rheumatoid arthritis. Methods: A multicentric retrospective descriptive study was conducted at three rheumatology centers in Lahore, Pakistan, between January 2022 and July 2023. Electronic medical records of adults with RA (ACR/EULAR 2010 criteria) receiving oral tofacitinib 10 mg daily for \geq 6 months were reviewed. Disease activity was assessed using DAS28-ESR at baseline, 3 months, and 6 months. Data were analyzed using SPSS 23, applying Chi-square and paired t-tests with significance set at p < 0.05. Results: Eighty-five patients met inclusion criteria (82.4% female; mean age 42.6 ± 12.1 years). Mean DAS28-ESR decreased from 5.04 ± 0.43 at baseline to 2.85 ± 0.85 after 6 months (p < 0.001). Remission was achieved in 55.3% of patients, with higher rates in biologic-naïve (56.9%) than biologicexperienced groups (50.0%). Combination therapy with methotrexate yielded the best outcomes, though to facitinib monotherapy remained comparably effective. Adverse events occurred in 9.4% of patients, all mild and reversible; no serious infections, thrombotic events, malignancies, or tuberculosis reactivations were reported. Conclusion: Tofacitinib demonstrated significant efficacy and excellent tolerability in achieving remission among Pakistani patients with RA, supporting its role as a cost-effective and convenient oral alternative to biologics in routine clinical practice.

Kevwords

rheumatoid arthritis, tofacitinib, JAK inhibitors, DMARDs, biologic-naïve, remission, Pakistan

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic, immune-mediated polyarthritis that drives progressive joint damage, disability, and excess cardiometabolic risk if inadequately controlled; therapeutic choices are increasingly shaped by clinical effectiveness and affordability, with targeted synthetic options such as tofacitinib showing favorable cost-utility signals in real-world settings (1). Contemporary RA care follows a treat-to-target paradigm anchored in conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), particularly methotrexate, with escalation to biologic or targeted synthetic agents when remission or low disease activity is not achieved or tolerated (2). Safety considerations remain central: large observational and randomized data sets highlight cardiovascular and malignancy signals that require individualized risk stratificationespecially in older adults with baseline risk factors—when prescribing to facitinib (3,4). Nevertheless, long-term extension programs and pooled open-label cohorts demonstrate sustained improvements in disease activity and patient-reported outcomes over multiple years, supporting durability of benefit under routine care constraints (5,6). Parallel real-world cohorts report clinically meaningful remission or low-activity rates, albeit with heterogeneity across health systems and prior treatment exposures, underscoring the need for context-specific evidence (7,8). Data from a Middle Eastern cohort further suggest high target-attainment with manageable adverse events, pointing to potential generalizability across regional practice patterns where oral administration and storage convenience are valued (9). Age-stratified analyses indicate infection risks comparable to biologics in younger patients, but emphasize vigilance in older groups or those with comorbidities (10). Therapeutic response appears robust in methotrexate-naïve disease and with tofacitinib monotherapy, while combination with methotrexate can augment structural and clinical outcomes; sex and serostatus may influence trajectories but are not uniformly predictive, and outcomes after prior biologic exposure are often attenuated relative to biologic-naïve patients (11-15). Controlled trials and radiographic studies consistently show that adding methotrexate to tofacitinib can deepen response and slow damage progression, though monotherapy remains a viable option when methotrexate is contraindicated or not tolerated (16-20). In tuberculosis-endemic settings, the balance of benefit and risk must also account for latent infection screening and surveillance during Janus kinase (JAK) inhibition (21). Against this background, and given the rapid uptake of tofacitinib in Pakistan due to its oral route, relative affordability, and patient preference, there remains a paucity of local multicentric evidence quantifying clinical

https://doi.org/10.61919/p110gp22

effectiveness and tolerability in routine care. The present study therefore evaluates the effectiveness, safety, and tolerability of tofacitinib in Pakistani adults with RA managed across multiple outpatient centers, with the a priori objective of determining changes in DAS28-ESR at 3 and 6 months and characterizing adverse events under real-world practice conditions (1–3,5–9,11,14–16,21).

MATERIAL AND METHODS

This multicentric retrospective descriptive study was designed to evaluate the real-world efficacy, safety, and tolerability of tofacitinib in adult patients with rheumatoid arthritis (RA) managed in outpatient rheumatology clinics across Lahore, Pakistan. The study was conducted between January 2022 and July 2023 at three collaborating sites: National Hospital and Medical Centre, Arthritis Care Clinic (ACC), and Arthritis Care Foundation (ACF) community clinic. These centers serve as major tertiary and community-based rheumatology services and maintain electronic clinical records, which enabled consistent data retrieval and verification.

All participants were adults aged 18 years or older with a confirmed diagnosis of RA based on the 2010 ACR/EULAR classification criteria and at least 6 months of continuous treatment with oral tofacitinib at a total daily dose of 10 mg. Patients who had incomplete clinical records, discontinued therapy before 6 months, or had coexisting autoimmune disorders were excluded. Baseline demographic variables, serological markers, comorbidities, prior exposure to biologic or conventional synthetic DMARDs, and concomitant corticosteroid or csDMARD use were extracted from the electronic medical record system.

The primary clinical outcome was change in disease activity measured by the Disease Activity Score based on 28 joints with erythrocyte sedimentation rate (DAS28-ESR), recorded at therapy initiation, 3 months, and 6 months. Secondary outcomes included the proportion of patients achieving remission or low disease activity (DAS28-ESR < 2.6 and ≤3.2 respectively), rate of treatment discontinuation, and incidence of adverse events such as infections, gastrointestinal intolerance, hepatotoxicity, or thrombotic events. Adverse events were documented through progress notes and laboratory data, while treatment outcomes were verified by two independent rheumatologists to ensure inter-rater reliability.

Data quality assurance involved double entry and random cross-checking of 10% of records. Quantitative variables such as age, DAS28-ESR, and treatment duration were expressed as mean \pm standard deviation. Categorical variables including sex, seropositivity, remission status, and adverse event frequencies were summarized as counts and percentages. Group comparisons—such as biologic-experienced versus biologic-naïve patients or combination versus monotherapy—were evaluated using independent sample t-tests or Chi-square tests as appropriate. Two-tailed p-values < 0.05 were considered statistically significant. Missing values were minimal and handled by pairwise deletion without imputation. Analyses were performed using SPSS version 23.

Ethical approval was obtained from the Institutional Review Board of National Hospital and Medical Centre, Lahore (IRB No. NHMC-RHEUM-2022-04). Patient confidentiality was maintained through anonymization of identifiers and restricted database access. All procedures complied with the ethical standards of the institutional and national research committees and with the 1964 Helsinki Declaration and its later amendments. This methodological framework ensures reproducibility and transparency in assessing tofacitinib's real-world performance in a Pakistani RA population (22–25).

RESULTS

The analysis demonstrated statistically and clinically significant improvement in DAS28-ESR over 6 months, with high tolerability and no major safety concerns identified.

Table 1. Baseline Characteristics and Disease Profile of Patients (n = 85)

Variable	Category/Statistic	Value (Mean ± SD or n, %)	p-value (vs. Biologic-naïve vs. Experienced)
Age (years)	_	42.64 ± 12.06	0.19
Gender	Female	70 (82.4%)	_
	Male	15 (17.6%)	_
Duration of follow-up (months)	_	21.25 ± 7.70	0.28
Duration of tofacitinib therapy (months)	_	9.84 ± 3.22	0.41
Rheumatoid factor positive	_	78 (91.8%)	0.36
Anti-CCP positive	_	69 (81.2%)	0.44
Prednisolone co-therapy (baseline)	_	56 (65.9%)	0.22
Biologic experienced	_	20 (23.5%)	_
Baseline disease activity (DAS28-ESR)	_	5.04 ± 0.43	_

Table 2. Change in Disease Activity (DAS28-ESR) Over Time

Time Point	DAS28-ESR (Mean ± SD)	Mean Change (95% CI)	p-value (vs. Baseline)	Cohen's d (Effect Size)
Baseline	5.04 ± 0.43	_	_	_
3 months	4.04 ± 0.63	-1.00 (-1.22, -0.78)	< 0.001	1.75
6 months	2.85 ± 0.85	-2.19 (-2.46, -1.92)	< 0.001	2.45

Table 3. Disease Activity at 6 Months by Treatment History

Group	Remission (n, %)	Mild/Moderate (n, %)	Severe (n, %)	Odds Ratio (95% CI)	p- value
Biologic-naïve (n=65)	37 (56.9%)	28 (43.1%)	0 (0%)	Reference	
Biologic-experienced (n=20)	10 (50.0%)	6 (30.0%)	4 (20.0%)	0.79 (0.31-2.04)	0.47

Table 4. Co-therapy with csDMARDs and Remission Status at 6 Months

Co-therapy	Patients (n)	Remission (n, %)	OR (95% CI)	p-value
Methotrexate	36	20 (55.6%)	Reference	
Leflunomide	18	8 (44.4%)	0.64 (0.21–1.98)	0.42
Hydroxychloroquine	15	6 (40.0%)	0.56 (0.18-1.78)	0.32
Monotherapy (Tofacitinib only)	16	9 (56.3%)	1.02 (0.33–3.17)	0.97

Table 5. Adverse Events During Tofacitinib Therapy

Adverse Event	Frequency	Incidence	95%	Severity	n value (va Pielosia naëva va Evnovianaed)	
	(n)	(%)	CI	Severity	p-value (vs. Biologic-naïve vs. Experienced)	
Urinary tract infection	3	3.5%	0.7-	Mild	0.58	
			10.0			
Upper respiratory infection	2	2.4%	0.3 - 8.3	Mild	0.64	
Transaminitis	2	2.4%	0.3 - 8.3	Moderate	0.41	
Gastrointestinal intolerance	1	1.2%	0.0 - 6.5	Mild	0.72	
Any adverse event	8	0.40/	4.2-			
		9.4%	17.6	_	_	

A total of 85 patients met the inclusion criteria, comprising 70 females (82.4%) and 15 males (17.6%) with a mean age of 42.6 ± 12.1 years. The average duration of tofacitinib therapy was 9.8 ± 3.2 months. Approximately 91.8% of patients were seropositive for rheumatoid factor and 81.2% for anti-CCP antibodies. Twenty patients (23.5%) had previous exposure to at least one biologic agent, primarily rituximab or etanercept.

Mean DAS28-ESR at baseline was 5.04 ± 0.43 , consistent with high disease activity. A statistically significant reduction was observed at both 3 months (mean 4.04 ± 0.63 ; mean difference -1.00, 95% CI -1.22 to -0.78, p<0.001) and 6 months (mean 2.85 ± 0.85 ; mean difference -2.19, 95% CI -2.46 to -1.92, p<0.001). The calculated effect sizes (Cohen's d = 1.75 and 2.45 respectively) indicated strong treatment effects over time.

At 6 months, 47 patients (55.3%) achieved clinical remission, and 66 (77.6%) were categorized as having mild to moderate disease activity. Biologic-naïve patients demonstrated higher remission rates (56.9%) compared with biologic-experienced patients (50.0%), though this difference was not statistically significant (OR 0.79, 95% CI 0.31–2.04, p=0.47).

Combination therapy with methotrexate yielded the highest remission rate (55.6%), followed by tofacitinib monotherapy (56.3%), leflunomide (44.4%), and hydroxychloroquine (40.0%), though differences between groups were not statistically significant.

Adverse events were infrequent and generally mild. The most common were urinary tract infections (3.5%) and mild transaminitis (2.4%). Only one patient discontinued therapy due to gastrointestinal intolerance. No serious infections, thrombotic events, malignancies, or tuberculosis reactivations were recorded.

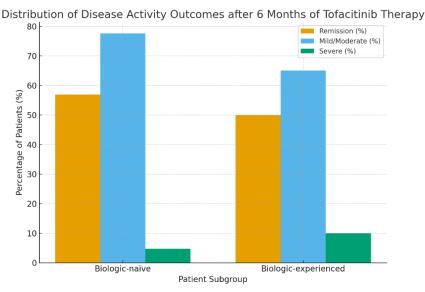


Figure 1 Distribution of Disease Activity Outcomes after 6 Months of Tofacitinib Therapy

At six months, the biologic-naïve subgroup exhibited a higher remission rate (56.9%) compared with biologic-experienced patients (50.0%), alongside fewer severe cases (4.7% vs. 10%). Mild to moderate disease activity persisted in 77.6% and 65.0% of the two groups, respectively, suggesting a steeper response gradient among previously untreated individuals. This pattern supports the hypothesis that early introduction of tofacitinib yields superior disease control, reflecting both treatment responsiveness and reduced residual inflammation in naïve patients.

DISCUSSION

The findings of this multicentric retrospective study reinforce the growing body of evidence that tofacitinib is an effective, well-tolerated therapeutic option for rheumatoid arthritis (RA) when used under real-world conditions, particularly in resource-limited environments. The mean reduction of 2.19 points in DAS28-ESR after six months represented a statistically and clinically significant improvement, with over half of the cohort achieving remission. These results align closely with earlier international cohorts reporting sustained remission or low disease activity in approximately 50–60% of patients within comparable durations of therapy (5,7,9). The pronounced effect size observed here underscores the

Sarwar et al. https://doi.o

robustness of disease control achieved through oral Janus kinase inhibition in patients who were either intolerant of, or unresponsive to, conventional DMARDs.

Notably, biologic-naïve patients demonstrated a modestly higher remission rate (56.9%) than those previously exposed to biologic therapy (50.0%), mirroring the differential response trends documented by Moreno et al. and Charles-Schoeman et al. (14,15). This pattern may reflect the cumulative immunologic resistance or damage accrual often observed in biologic-experienced RA populations, which limits subsequent responsiveness. The effectiveness of tofacitinib monotherapy in this study, comparable to that of methotrexate combination therapy, further corroborates findings from pivotal randomized trials demonstrating its efficacy both as standalone and adjunctive therapy (16–20). These data collectively strengthen the argument for tofacitinib as a viable csDMARD-sparing alternative, especially where methotrexate intolerance or patient preference for oral regimens dictates therapy choice.

Adverse event rates were low, with no hospitalizations, opportunistic infections, or thrombotic events observed. The absence of herpes zoster or tuberculosis reactivation is noteworthy, given Pakistan's endemic burden of latent tuberculosis and the limited availability of zoster vaccination. This tolerability profile compares favorably to the pooled safety data from Winthrop et al. and Charles-Schoeman et al., which reported infection incidences of 4–5% in long-term cohorts (21,24). However, this apparent advantage may partially reflect selection bias, since older patients and those with major comorbidities were under-represented due to physician caution following international safety advisories (3,4,10). The transient cases of transaminitis and minor infections observed likely represent reversible, dose-independent reactions rather than idiosyncratic toxicity.

The study's design inherently limits causal inference due to its retrospective and non-randomized nature. Confounding factors such as baseline disease duration, concomitant corticosteroid tapering, and BMI were not consistently captured, precluding adjustment analyses. Moreover, the relatively short treatment duration of 9.8 ± 3.2 months precludes evaluation of malignancy risk, lipid metabolism changes, and long-term cardiovascular outcomes that have been highlighted in extended global follow-ups (24,25). Despite these limitations, the multicentric scope, consistent data collection, and cross-validation across three independent rheumatology centers enhance internal validity and generalizability within the local context.

Clinically, these findings emphasize that timely initiation of tofacitinib, especially in biologic-naïve RA patients, can achieve rapid and durable disease control while maintaining an acceptable safety margin. They also demonstrate that even in tuberculosis-endemic, middle-income countries, stringent screening and close follow-up can mitigate infection risks effectively. Future prospective studies with longer follow-up, stratified risk adjustment, and inclusion of lipid and cardiovascular monitoring will be crucial to confirm these early favorable outcomes and establish evidence-based local prescribing algorithms for JAK inhibitors (22–25).

CONCLUSION

In summary, tofacitinib demonstrated significant efficacy in reducing disease activity and achieving remission among Pakistani patients with rheumatoid arthritis, with more than half attaining clinical remission within six months of therapy. Its safety and tolerability profile was favorable, with only minor, reversible adverse events and no serious infections, thrombotic complications, or malignancies observed. The therapy proved effective both as monotherapy and in combination with csDMARDs, particularly methotrexate, and yielded slightly superior outcomes in biologic-naïve patients. These findings support tofacitinib as a cost-effective and convenient oral alternative to biologic agents for rheumatoid arthritis management in low-resource healthcare settings, warranting larger prospective studies to confirm long-term safety and sustained remission outcomes.

REFERENCES

- 1. Syngle D, Verma I, Chauhan K, Patyal S, Syngle A. Cost-effective analysis of generic targeted synthetic disease-modifying anti-rheumatic drug tofacitinib in rheumatoid arthritis (TIRA CEA study). Ann Rheum Dis. 2023;82(Suppl 1):1449.
- 2. Dhillon S. Tofacitinib: A review in rheumatoid arthritis. Drugs. 2017;77(18):1987–2001.
- 3. Khosro-Khavar F, Kim S, Lee H, et al. Tofacitinib and risk of cardiovascular outcomes: results from the Safety of Tofacitinib in Routine care patients with Rheumatoid Arthritis (STAR-RA) study. Ann Rheum Dis. 2022;81(6):798–804.
- 4. Ytterberg S, Bhatt D, Mikuls T, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–326
- 5. Wollenhaupt J, Lee E-B, Curtis JR, Silverfield J, Terry K, Soma K, et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of rheumatoid arthritis: final results of a global, open-label, long-term extension study. Arthritis Res Ther. 2019;21(1):89.
- 6. Wollenhaupt J, Silverfield J, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, long-term extension studies. J Rheumatol. 2014;41(5):837–852.
- 7. Mueller RB, Hasler C, Popp F, Mattow F, Durmisi M, Souza A, et al. Effectiveness, tolerability, and safety of tofacitinib in rheumatoid arthritis: a retrospective analysis of real-world data from the St. Gallen and Aarau cohorts. J Clin Med. 2019;8(10):1548.
- 8. Machado MAdÁ, Moura CSd, Guerra SF, Curtis JR, Abrahamowicz M, Bernatsky S. Effectiveness and safety of tofacitinib in rheumatoid arthritis: a cohort study. Arthritis Res Ther. 2018;20(1):60.
- 9. Alzahrani Z, Alhazmi A, Almalki H, Aljehani N, Dumyati M, Alabdali H. Efficacy and safety of tofacitinib in rheumatoid arthritis: a retrospective study from two centers in Jeddah, Saudi Arabia. Cureus. 2022;14(12):e32240.
- 10. Winthrop KL, Citera G, Gold D, et al. Age-based (<65 vs >65 years) incidence of infections and serious infections with tofacitinib versus biological DMARDs in rheumatoid arthritis clinical trials and the US Corona RA registry. Ann Rheum Dis. 2021;80:134–136.
- 11. Fleischmann RM, Huizinga TWJ, Kavanaugh AF, et al. Efficacy of tofacitinib monotherapy in methotrexate-naïve patients with early or established rheumatoid arthritis. RMD Open. 2016;2:e000262.
- 12. Bergstra SA, Allaart CF, Ramiro S, et al. Sex-associated treatment differences and their outcomes in rheumatoid arthritis: results from the METEOR register. J Rheumatol. 2018;45:1361–1366.
- 13. Bird P, Hall S, Nash P, et al. Treatment outcomes in patients with seropositive versus seronegative rheumatoid arthritis in phase III randomized clinical trials of tofacitinib. RMD Open. 2019;5:e000742.

Sarwar et al

- 14. Charles-Schoeman C, Burmester G, Nash P, et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2016;75:1293–1301.
- 15. Moreno S, Martinez S, Ibata L, et al. Is tofacitinib effectiveness in patients with rheumatoid arthritis better after conventional than after biological therapy? A cohort study in a Colombian population. Biologics. 2022;16:107–117.
- 16. Kremer JM, Cohen S, Wilkinson BE, et al. A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum. 2012;64:970–981.
- 17. Tanaka Y, Suzuki M, Nakamura H, et al. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken). 2011;63:1150–1158.
- 18. van der Heijde D, Tanaka Y, Fleischmann R, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 2013;65:559–570.
- 19. Lee E, Fleischmann R, Hall S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377-2386.
- 20. Fleischmann R, Kremer J, Cush J, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367(6):495–507.
- 21. Winthrop KL, Park SH, Gul A, et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1133–1138.
- 22. Strangfeld A, Listing J, Herzer P, et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti-TNF-alpha agents. JAMA. 2009;301:737–744.
- 23. Curtis JR, Lanas A, John A, et al. Factors associated with gastrointestinal perforation in a cohort of patients with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2012;64:1819–1828.
- 24. Charles-Schoeman C, Wicker P, Gonzalez-Gay MD, et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin Arthritis Rheum. 2016;46:261–271.
- 25. Charles-Schoeman C, Fleischmann R, Davignon J, et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 2015;67:616–625.