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ABSTRACT 
Background: The PTPN22 gene encodes lymphoid tyrosine phosphatase (LYP), a critical regulator of T-cell receptor signaling. 

Variants in PTPN22 have been implicated in multiple autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, 

and systemic lupus erythematosus. However, the functional impact of many reported single nucleotide polymorphisms (SNPs) 

remains unresolved. Objective: This study aimed to systematically identify and prioritize deleterious nonsynonymous SNPs 

(nsSNPs) in PTPN22 using a comprehensive in silico predictive modeling framework. Methods: A total of 14,919 SNPs in 

PTPN22 were retrieved from the NCBI dbSNP database. These included 563 missense, 218 synonymous, 36 in the 5′UTR, 229 

in the 3′UTR, and 13,124 intronic SNPs. Missense variants were evaluated using multiple algorithms (SIFT, PolyPhen-2, 

PANTHER, PhD-SNP, SNPs&GO), followed by protein stability prediction (I-Mutant, MuPro), functional assessment 

(MutPred), conservation profiling (ConSurf), structural modeling (I-TASSER, TM-align), and interaction analysis 

(GeneMANIA, STRING). Post-translational modification sites were predicted using GPS, NetPhos, and BDM-PUB. Results: 

Among 563 missense variants, 30 nsSNPs were consistently predicted to be deleterious across multiple algorithms. SIFT 

identified 193 damaging variants (score <0.05), while PolyPhen-2 categorized 30 as probably damaging (score = 1.0). Protein 

stability analysis revealed that 29 of 30 variants decreased stability (ΔΔG < 0 by I-Mutant), and all 30 were destabilizing by 

MuPro. Functional prediction showed that 20 variants had MutPred scores >0.75, indicating high-confidence deleterious 

potential. Conservation analysis identified 14 variants in highly conserved exposed residues and 16 in structurally buried 

conserved regions. Structural modeling demonstrated significant deviations in mutant proteins (RMSD range 0.69–0.86 Å; 

TM-scores 2.8–4.4). Network analyses revealed strong gene–gene (e.g., TRAF3, CSK, ZAP70) and protein–protein interactions 

(STRING: 11 nodes, 41 edges, clustering coefficient 0.91). Post-translational modification prediction suggested that several 

variants may disrupt phosphorylation, ubiquitination, and methylation sites, indicating altered signaling potential. 

Conclusion: This in silico study identifies 30 high-confidence deleterious nsSNPs in PTPN22 that may influence protein 

stability, structure, and signaling interactions. These variants represent strong candidates for biomarker development in 

autoimmune susceptibility and warrant experimental validation in wet-lab and clinical studies. Integrating predictive modeling 

with immunogenetics may inform personalized healthcare approaches for autoimmune disease risk stratification and targeted 

therapies. 

Keywords: PTPN22 protein, human, Polymorphism, Single Nucleotide, Amino Acid Substitution, Mutation, Missense, Protein 

Stability, Protein Structure, Tertiary, Computational Biology, Molecular Docking Simulation, Autoimmune Diseases/genetics, 

Genetic Predisposition to Disease, Bioinformatics/methods, Protein Interaction Mapping. 

INTRODUCTION 
Diabetes mellitus and autoimmune diseases are complex, multifactorial conditions that together pose a major global health burden (1,2). 

Diabetes alone affects over 425 million individuals worldwide, contributing significantly to morbidity, premature mortality, and impaired 

quality of life (3). Both genetic susceptibility and environmental influences are central to the etiology of diabetes and autoimmune disorders 

(1,2,4). Recent advances in genomics have identified numerous genetic loci that modulate susceptibility to these diseases, highlighting the 

importance of candidate gene studies and genome-wide association approaches (5,6). Among these loci, the protein tyrosine phosphatase 

non-receptor type 22 (PTPN22) gene has emerged as a key regulator of immune tolerance and T-cell signaling pathways (7-9). 

The PTPN22 gene, located on chromosome 1p13.3–13, encodes the lymphoid-specific phosphatase (Lyp), which negatively regulates T-

cell receptor signaling and plays a critical role in maintaining immune homeostasis (7,10,11). Alterations in PTPN22 function can lead to 

dysregulated immune activation, promoting autoantibody production and immune-mediated pathology (8,12). Indeed, variants of PTPN22 

have been strongly associated with a spectrum of autoimmune conditions, including rheumatoid arthritis, systemic lupus erythematosus, 

type 1 diabetes, inflammatory bowel disease, and Graves’ disease (7,13-15). In addition, there is growing evidence that PTPN22 contributes 
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to the pathogenesis of type 2 diabetes mellitus (T2DM) through immune system–mediated mechanisms, linking its role to both 

autoimmunity and metabolic disorders (9,16). 

Genetic variation within PTPN22 is extensive, with thousands of single-nucleotide polymorphisms (SNPs) catalogued in public databases. 

However, non-synonymous SNPs (nsSNPs)—those that result in amino acid substitutions—are of particular interest, as they have the 

greatest potential to alter protein structure, stability, and function (17). Previous work has largely focused on a single variant, rs2476601 

(R620W), which has been consistently associated with multiple autoimmune phenotypes (13,14). Yet, beyond this well-studied variant, a 

comprehensive evaluation of additional nsSNPs in PTPN22 remains limited (18). Identifying which of these substitutions are potentially 

deleterious is essential for prioritizing candidates for experimental validation and for understanding the genetic architecture of 

autoimmunity and diabetes risk (5,6). 

In this study, we performed a systematic in silico analysis of nsSNPs in the PTPN22 gene using a multi-layered computational pipeline. 

Publicly available genetic repositories, including dbSNP and UniProt, were mined to retrieve PTPN22 variants and the corresponding 

protein sequence. A suite of predictive tools was employed to evaluate the functional consequences of amino acid substitutions, including 

SIFT (19), PolyPhen-2 (20), PANTHER (21), PhD-SNP (22), and SNPs & GO (23). Structural stability was further assessed using I-Mutant 

(22,24) and MuPro, while MutPred provided insights into the potential functional disruptions (25). Evolutionary conservation analysis was 

conducted with ConSurf (26), and three-dimensional protein modeling was performed using I-TASSER (27) and visualized with UCSF 

Chimera (28). In addition, we investigated gene–gene and protein–protein interaction networks using GeneMANIA (29) and STRING (30) 

and predicted post-translational modification sites with GPS-MSP (31), GPS 3.0 (32), NetPhos (32), and BDM-PUB (25). 

Through this integrative computational approach, we identified a subset of 30 nsSNPs consistently predicted to be deleterious across 

multiple independent algorithms. Many of these variants were localized to highly conserved regions, predicted to destabilize the protein, 

or associated with functional domains essential for immune regulation. These findings provide a computationally derived catalogue of 

high-priority PTPN22 variants, offering new insights into potential mechanisms underlying autoimmunity and diabetes susceptibility. 

Importantly, these results should be regarded as predictive and hypothesis-generating, requiring validation through experimental studies 

and population-based genetic association analyses (5,6). 

MATERIAL AND METHODS 
This study was designed as a computational predictive modelling analysis of the PTPN22 gene, focusing exclusively on non-synonymous 

single-nucleotide polymorphisms (nsSNPs) within the coding region. The rationale for this in silico approach was to systematically identify 

amino acid substitutions with the highest likelihood of altering protein structure, stability, or function, using an integrative pipeline of 

validated bioinformatics tools. Unlike observational or experimental designs, this framework relies on publicly available genomic 

databases and algorithmic prediction models, providing a reproducible and scalable means of variant prioritization (1, 2). 

Data Sources and Retrieval; Variant Filtering and Selection 

All SNP data for the PTPN22 gene were retrieved from the dbSNP database (NCBI, Build 157, accessed August 18, 2025), using the 

official gene symbol PTPN22 as the query term (3). To ensure transparency, only SNPs annotated as missense variants were included, as 

synonymous and intronic variants were unlikely to affect protein coding. The reference amino acid sequence of PTPN22 was obtained 

from the UniProt Knowledgebase (UniProt ID: Q9Y2R2, release 2025_03) (4). Additional sequence and annotation data were cross-

referenced with Ensembl Genome Browser (release 114, May 2025) to confirm variant positions and coding context (5). From the initial 

pool of 14,919 SNPs associated with PTPN22, the following filtering strategy was applied: 563 nsSNPs were identified in coding regions. 

Synonymous variants, untranslated region (UTR) variants, and intronic variants were excluded. Only missense substitutions were 

considered for downstream functional and structural prediction. 

Functional Impact Prediction 

The pathogenic potential of each nsSNP was evaluated using multiple algorithms to minimize tool-specific bias: SIFT (Sorting Intolerant 

From Tolerant, v6.2.1) predicts whether amino acid substitutions affect protein function, based on sequence homology and 

physicochemical properties, with variants having a tolerance index ≤0.05 considered deleterious (6); PolyPhen-2 (Polymorphism 

Phenotyping v2, HumDiv model, v2.2.3) predicts damaging effects based on structural and evolutionary features, with scores closer to 1.0 

indicating higher probability of damage (7); PANTHER assesses deleteriousness using subPSEC scores, where values approaching –10 

suggest strong functional impairment (8); PhD-SNP uses support vector machine classifiers to distinguish disease-related from neutral 

mutations (9); and SNPs & GO integrates Gene Ontology functional annotations into predictions of variant pathogenicity (10). Only 

variants classified as deleterious by at least two independent tools were shortlisted for further analysis. 

Protein Stability Analysis 

To assess the effect of amino acid substitutions on protein stability, I-Mutant 3.0 was employed to predict Gibbs free energy changes (ΔΔG) 

upon mutation, based on sequence and structure, with a ΔΔG < 0 indicating decreased stability (9, 11). MuPro predictions were used to 

validate results, applying neural network–based models to confirm destabilizing substitutions (9). 

Functional and Structural Prediction 

MutPred (v2.0) was used to identify functional consequences of amino acid substitutions, including potential alterations in post-

translational modification sites and protein motifs, with predictions having a general score >0.75 considered high-confidence deleterious 
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(12). ConSurf analysis was performed to evaluate evolutionary conservation of amino acid residues, classifying sites as highly conserved 

(critical for function) or variable (tolerant to change) (13). Three-dimensional structural models of both wild-type and mutant PTPN22 

proteins were generated using I-TASSER, with model quality assessed by C-score, TM-align scores, and RMSD values (14). Visualization 

and superposition analysis were carried out in UCSF Chimera (v1.17.3) (15). 

Gene–Gene and Protein–Protein Interaction Networks 

To investigate the broader molecular context of PTPN22, GeneMANIA was used to predict gene–gene interactions based on co-expression, 

co-localization, and shared pathways (16). STRING database (v12.5) was employed to construct protein–protein interaction networks, 

using a medium-confidence score threshold (0.4), with metrics such as average node degree, clustering coefficient, and enrichment P-

values reported (17). 

Post-Translational Modification (PTM) Analysis 

The potential for amino acid substitutions to alter regulatory modification sites was assessed with GPS-MSP 3.0 for methylation predictions 

(18); GPS 3.0 and NetPhos 3.1 for phosphorylation site identification (19); and BDM-PUB for ubiquitination site prediction (12). Only 

residues with scores above the default threshold were considered significant. 

Bias, Limitations, and Reproducibility 

This study is subject to algorithmic limitations, including assumptions embedded in training datasets, incomplete representation of variant 

effects in databases, and evolutionary bias in conservation analyses. Predictions may vary across tools due to differing statistical models, 

making consensus approaches essential. For reproducibility, the following details are provided: Databases: dbSNP (NCBI, Build 157, 

accessed August 18, 2025), UniProt (Q9Y2R2, release 2025_03), Ensembl (release 114, May 2025).  

Software versions: SIFT v6.2.1, PolyPhen-2 v2.2.3 (HumDiv), PANTHER, PhD-SNP, SNPs & GO, I-Mutant 3.0, MuPro, MutPred v2.0, 

ConSurf, I-TASSER, Chimera v1.17.3, GeneMANIA, STRING v12.5, GPS-MSP 3.0, GPS 3.0, NetPhos 3.1, BDM-PUB. Parameters: 

Default thresholds applied unless otherwise stated. Data/code availability: All datasets were retrieved from public repositories. 

Computational workflow scripts and analysis pipelines will be made available upon request. 

RESULTS 
A comprehensive mining of the NCBI dbSNP database for PTPN22 identified a total of 14,919 variants, dominated by intronic changes 

(~13,124; Table R1). Coding variation included 563 missense and 218 synonymous SNPs, as well as 36 and 229 variants in the 5′ and 3′ 

UTRs, respectively. Since nonsynonymous changes are most likely to perturb protein function, the 563 missense nsSNPs were advanced 

for in silico pathogenicity screening (Figure A1). 

Table R1. Snapshot of PTPN22 variant space used for downstream analyses (main text) 

Category Count 

Intronic ~13,124 

Missense (nsSNPs) 563 

Synonymous 218 

5′ UTR 36 

3′ UTR 229 

Total 14,919 

Table R2. Tool-wise summary of deleterious predictions (main text) 

Tool Deleterious definition Deleterious (n) Neutral/Benign (n) 

SIFT Score ≤ 0.05 193 370 

PhD-SNP Disease-related 133 430 

SNPs&GO Harmful 157 406 

PANTHER Probably/possibly damaging 61 / 183 319 benign 

PolyPhen-2 Probably damaging 30 — 

Consensus Supported across tools 30 — 

Pathogenicity predictions across bioinformatics tools 

The 563 nsSNPs were evaluated using SIFT, PhD-SNP, SNPs&GO, PANTHER, and PolyPhen-2. Tool-specific tallies converged on a 

consensus set of 30 deleterious nsSNPs (Table A1). SIFT classified 193/563 as damaging (tolerance index ≤0.05), PhD-SNP predicted 133 

as disease-related, and SNPs&GO labeled 157 as harmful. PANTHER subPSEC scores apportioned variants into 61 probably damaging, 

183 possibly damaging, and 319 probably benign. PolyPhen-2 annotated 30 nsSNPs as probably damaging with near-maximal scores. A 

compact cross-tool comparison is shown in Table R2, while Figure A2 depicts the distribution across algorithms.  

Within this consensus set, most deleterious substitutions were clustered in the N-terminal phosphatase domain (e.g., G92R, P96L, T109I/L, 

R115G, C139Y, R141C, C160R/S, R183G/Q, H189L, P194S, D195Y/H, L206R, R213C, C227F, G230D, C231Y, G232E, C238Y, 

Y242H/N, L246S, R266W, L289R), while two variants mapped to the extreme C-terminus (R791C/H), suggesting vulnerabilities in both 

catalytic and regulatory regions. I-Mutant 2.0 predicted reduced thermodynamic stability for 29/30 variants (ΔΔG < 0), with H189L as the 
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only substitution showing a mild stabilizing effect (ΔΔG ≈ +0.42). MuPro uniformly predicted all 30 variants as destabilizing (negative G 

values). Representative findings are given in Table R3 (full data in Table A2). Complementary MutPred analysis yielded scores ranging 

from 0.196 to 0.967, with the majority exceeding the 0.75 high-confidence threshold (Table A3). Seven variants (C227F, G92R, Y242N, 

G230D, R115G, G232E, C139Y) reached ≥0.90, strongly implicating functional disruption. 

Table R3. Highest-confidence deleterious nsSNPs (MutPred ≥0.90; main text) 

rsID AA change MutPred 

rs1178976963 C227F 0.967 

rs1351955222 G92R 0.938 

rs763704356 Y242N 0.932 

rs1161256976 G230D 0.925 

rs1453994112 R115G 0.925 

rs374877682 G232E 0.923 

rs750615659 C139Y 0.913 

Interpretation: Agreement between I-Mutant and MuPro predictions confirms that loss of stability is the dominant biophysical effect, 

aligning with high MutPred scores for functional disruption. 

Evolutionary conservation and residue exposure 

ConSurf analysis placed all 30 variants within conserved sequence contexts, equally split between 15 exposed and 15 buried residues. 

Exposed, conserved residues included P96L, R141C, R183G/Q, H189L, P194S, D195Y/H, R213C, G230D, G232E, R266W, R791H/C, 

with R33W also exposed in a conserved region. The remaining mutations (G92R, T109I/L, R115G, C139Y, C160R/S, L206R, C227F, 

C231Y, C238Y, Y242H/N, L246S, L289R) were buried yet conserved, suggesting impaired structural packing (Figure A3; Table A3 cross-

references). 

3D structural modeling and alignment 

Wild-type and mutant models generated via I-TASSER were structurally aligned with TM-align. RMSD values ranged from ~0.69 to 0.86 

Å, consistent with localized structural perturbations while maintaining the global fold (Table A4). Chimera visualization revealed side-

chain repacking and backbone shifts in the catalytic core for N-terminal variants, and conformational deviations in the proline-rich C-

terminus for R791C/H (Figure A4). 

Interaction networks support immune signaling relevance 

GeneMANIA network analysis implicated PTPN22 in immune signaling neighborhoods, revealing physical interactions with TRAF3, 

GHR, PDPK1, PSTPIP1/2, WAS, EGFR, CBL, PRKCD, NTRK1, PDGFRB, ERBB2, CSK, ZAP70, CD247, CDH2; co-expression with 

ITK, PTPN7, EVI2A, JCHAIN, ZAP70, CD247, PDPK1, PSTPIP1; and co-localization with PTPN7, CD247, CSK, WAS (Figure A5). 

STRING analysis further confirmed strong PPI enrichment (11 nodes, 41 edges; average degree 8.36; clustering coefficient 0.91; p = 3.14 

× 10⁻¹¹) (Figure A6). 

Post-translational modification landscape 

PTM predictions highlighted additional regulatory implications. Methylation: GPS-MSP identified a key arginine methylation site at 

position 799 (FSKPKGPRNPPPTWN; Table A5). Phosphorylation: GPS 3.0 and NetPhos 3.1 predicted 182 phosphorylation sites (Ser 

103, Thr 49, Tyr 30), distributed as 57% serine, 27% threonine, and 17% tyrosine (Figure A7; Table A6). Ubiquitination: BDM-PUB 

predicted 45 lysine sites, with clusters in the C-terminal region (positions 736–753) and motifs around residues 30–60 and 160–177 (Table 

A7). A concise digest is provided in Table R4. 

Table R4. PTM summary for PTPN22 (main text) 

PTM Predicted burden Highlights 

Arginine 

methylation 
1 site R799 (FSKPKGPRNPPPTWN) 

Phosphorylation 182 sites 
57% Ser, 27% Thr, 17% Tyr; high-confidence S35, S78, S167, S302, S352, S359, 

S362, S692, S734, S745, S751 

Ubiquitination 45 sites Dense at K675 (score 3.47), K736 (3.14), K548 (2.77) 

Integrative interpretation and prioritization 

Across orthogonal methods, 30 nsSNPs consistently emerged as deleterious, destabilizing the protein and frequently impacting conserved 

residues. The highest-confidence group (C227F, G92R, Y242N, G230D, R115G, G232E, C139Y) combines cross-tool consensus, high 

MutPred scores (≥0.90), and ConSurf conservation. Network analyses reinforce the integration of PTPN22 into immune receptor/proximal 

signaling, aligning with its established role in autoimmune susceptibility and diabetes. These findings nominate a shortlist of variants for 

experimental validation, including biochemical stability assays, enzymatic activity testing, and pathway readouts in lymphoid cells, while 

the complete evidence base is preserved in appendix tables (A1–A7) and figures (A1–A7).  
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DISCUSSION 
The present in silico study systematically analyzed 14,919 single-nucleotide polymorphisms (SNPs) in the PTPN22 gene using multiple 

bioinformatics pipelines, with a particular focus on the 563 missense variants (1). Through integration of functional, structural, stability, 

and conservation-based tools, a consensus set of 30 deleterious non-synonymous SNPs (nsSNPs) was identified (2). These variants were 

consistently predicted to disrupt PTPN22 protein stability, alter three-dimensional conformation, and occur at evolutionarily conserved 

residues, underscoring their potential biomedical relevance (3). 

Comparison with Prior Computational and Experimental Studies 

Several of the deleterious variants identified here overlap with findings from previous studies. For example, substitutions at positions 

R620W and R263Q have long been implicated in autoimmune diseases, particularly type 1 diabetes, rheumatoid arthritis, and systemic 

lupus erythematosus (4-6). Although not all variants identified in this study have been experimentally validated, the clustering of multiple 

deleterious predictions within conserved domains (e.g., residues 183–246 and 791) supports earlier reports that mutations in the catalytic 

and regulatory domains of PTPN22 profoundly alter immune signaling (7, 8). 

Experimental studies have demonstrated that PTPN22 functions as a negative regulator of T-cell receptor signaling by dephosphorylating 

key kinases such as Lck and ZAP70 (9, 10). Disruption of this process has been associated with hyperactive immune responses (11). 

Consistent with this, our GeneMANIA and STRING network analyses identified CSK, ZAP70, TRAF3, WAS, and EGFR as key interactors 

of PTPN22 (12, 13). Variants that destabilize or distort the catalytic domain may impair these interactions, thereby providing a plausible 

mechanistic explanation for disease susceptibility (14). 

Biological Significance of Structural and Functional Predictions 

Structural modeling revealed that several deleterious variants, including R33W, R183G/Q, Y242H/N, and R791C/H, induced measurable 

conformational shifts (RMSD values up to 0.86 Å) (15). Importantly, these residues are located in highly conserved and functionally 

exposed regions, suggesting that they may directly interfere with substrate recognition or protein–protein binding (16). Stability analyses 

further showed that nearly all variants were predicted to destabilize the protein, with L246S and L289R showing the strongest destabilizing 

effects (17). Such cumulative effects on structure and stability provide a strong rationale for prioritizing these variants in downstream 

experimental studies (18). 

Limitations of In Silico Predictions 

While computational pipelines provide valuable insights, it is important to recognize their limitations. Algorithms such as SIFT, PolyPhen, 

and MutPred rely on sequence homology, structural models, and evolutionary conservation, which may not fully capture biological 

complexity (19-21). Dataset incompleteness, redundancy, and algorithm-specific assumptions can lead to discrepancies, as exemplified by 

R141C, which was predicted deleterious by some tools but scored below threshold in MutPred analysis (22). Moreover, predicted 

alterations in stability or post-translational modifications (PTMs) cannot be equated to disease causality without biochemical validation 

(23). 

Another limitation concerns the reliance on I-TASSER homology models for 3D structural comparisons (24). Although TM-scores and 

RMSD values highlight conformational deviations, these predictions are constrained by template quality and may not precisely reflect in 

vivo folding dynamics (25). Similarly, predictions of PTMs, while informative, do not account for cell-specific kinase availability or 

regulatory context, and thus should be viewed as hypotheses rather than definitive conclusions (26). 

Clinical and Translational Relevance 

Despite these limitations, our findings hold translational promise. The consensus set of 30 deleterious nsSNPs provides a focused panel 

for future genotype–phenotype correlation studies in autoimmune diseases (27). In particular, residues such as G92R, R183G/Q, G230D, 

and R791C/H represent strong candidates for functional assays due to their high deleterious scores, evolutionary conservation, and 

predicted destabilization (28). Experimental validation of these variants may inform biomarker development and help identify individuals 

at higher genetic risk for autoimmunity (29). 

Furthermore, insights from PTM predictions suggest that certain nsSNPs may interfere with phosphorylation and ubiquitination sites, 

potentially altering signaling cascades beyond the catalytic activity of PTPN22 (30). This aligns with growing evidence that altered post-

translational regulation of immune signaling proteins is a key driver of pathogenic autoimmunity (31). 

Concluding Remarks on Predictive Value 

Overall, this study provides a comprehensive computational framework for prioritizing potentially pathogenic nsSNPs in PTPN22 (32). 

By integrating multiple predictive approaches, we identified variants that are not only structurally destabilizing but also conserved, 

functionally exposed, and network-connected (33). However, these results should be interpreted cautiously as predictive associations (34). 

Definitive claims regarding pathogenicity require wet-lab validation in biochemical assays, cellular models, and population-level studies 

(35). 

CONCLUSION 
The in-silico analysis of 14,919 SNPs in the PTPN22 gene successfully identified 30 deleterious non-synonymous SNPs (nsSNPs) using 

a multi-layered computational pipeline, aligning with the objective to comprehensively assess PTPN22 variants for their potential role in 

https://jhwcr.com/index.php/jhwcr/index
https://creativecommons.org/licenses/by/4.0/deed.en
https://jhwcr.com/index.php/jhwcr/index


Gul et al. | A Comprehensive Analysis of Non-Synonymous SNPs in the PTPN22 Gene Using in Silico Tools  
 

 

JHWCR, III (10), CC BY 4.0, Views are authors’ own. https://doi.org/10.61919/nnysjt72 
 

autoimmune disorders and type 2 diabetes through bioinformatics tools. Key findings reveal these nsSNPs disrupt protein stability, alter 

3D conformation, and cluster in conserved regions, suggesting significant implications for human healthcare by increasing susceptibility 

to immune-mediated diseases. Clinically, these variants, particularly G92R, R183G/Q, and R791C/H, offer promising candidates for 

biomarker development and personalized risk assessment, potentially guiding targeted interventions. Research implications include the 

need for wet-lab validation through biochemical assays and population-based studies to confirm pathogenicity, thereby advancing the 

understanding of PTPN22’s role in disease etiology and informing future genomic and therapeutic strategies. 
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APPENDIX (DETAILED TABLES AND FIGURES) 

Table 1. The 30 common deleterious nsSNPs detected by different tools 

SNP ID A.A 

Change 

Allele SNP AND GO 

(Probability) 

SIFT (Score) PANTHER (Score) PhD 

SNP 

POLYPHEN 2 

rs1239749266 R33W T>A Disease (0.948) Not tolerated 

(0.00) 

Probably damaging 

(0.57) 

Disease 4 Probably damaging 

0.999 

rs1351955222 G92R C>T Disease (0.926) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

1.000 

rs751531344 P96L G>A Disease (0.869) Not tolerated 

(0.00) 

Probably damaging 

(0.57) 

Disease 5 Probably damaging 

1.000 

rs771337900 T109I G>A,C,T Disease (0.867) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 2 Probably damaging 

1.000 

rs771337900 T109L G>A,C,T Disease (0.846) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 1 Probably damaging 

1.000 

rs1453994112 R115G T>C Disease (0.815) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

1.000 

rs750615659 C139Y C>T Disease (0.965) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 4 Probably damaging 

1.000 

rs115552198 R141C G>A Disease (0.927) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 3 Probably damaging 

1.000 

rs1233969548 C160R A>G Disease (0.883) Not tolerated 

(0.00) 

Probably damaging 

(0.57) 

Disease 4 Probably damaging 

0.999 

rs746672873 C160S C>G Disease (0.740) Not tolerated 

(0.02) 

Probably damaging 

(0.57) 

Disease 3 Probably damaging 

0.994 

rs34590413 R183G G>A,C Disease (0.857) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 4 Probably damaging 

0.999 

rs201429780 R183Q C>T Disease (0.820) Not tolerated 

(0.02) 

Probably damaging 

(0.85) 

Disease 4 Probably damaging 

0.999 

rs749042805 H189L T>A Disease (0.868) Not tolerated 

(0.01) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

0.986 

rs867799930 P194S G>A Disease (0.908) Not tolerated 

(0.01) 

Probably damaging 

(0.85) 

Disease 1 Probably damaging 

0.999 

rs760638506 D195Y C>A,G Disease (0.960) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

1.000 

rs760638506 D195H C>A,G Disease (0.935) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 5 Probably damaging 

1.000 

rs61738614 L206R A>C Disease (0.936) Not tolerated 

(0.01) 

Probably damaging 

(0.85) 

Disease 5 Probably damaging 

0.999 

rs1463096581 R213C G>A Disease (0.928) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 5 Probably damaging 

1.000 

rs1178976963 C227F C>A Disease (0.951) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 7 Probably damaging 

1.000 

rs1161256976 G230D C>T Disease (0.999) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 5 Probably damaging 

1.000 

rs754406296 C231Y C>T Disease (0.922) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

1.000 

rs374877682 G232E C>T Disease (0.999) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

1.000 

rs756892218 C238Y C>T Disease (0.931) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 7 Probably damaging 

1.000 

rs763704356 Y242H A>G,T Disease (0.765) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 6 Probably damaging 

0.998 

rs763704356 Y242N A>G,T Disease (0.841) Not tolerated 

(0.02) 

Probably damaging 

(0.85) 

Disease 7 Probably damaging 

1.000 

rs1230924605 L246S A>G Disease (0.828) Not tolerated 

(0.04) 

Probably damaging 

(0.85) 

Disease 4 Probably damaging 

1.000 

rs72650670 R266W G>A,T Disease (0.974) Not tolerated 

(0.00) 

Probably damaging 

(0.85) 

Disease 2 Probably damaging 

1.000 

rs1280005604 L289R A>C Disease (0.846) Not tolerated 

(0.00) 

Probably damaging 

(0.57) 

Disease 6 Probably damaging 

1.000 

rs368366403 R791C G>A Disease (0.834) Not tolerated 

(0.00) 

Probably damaging 

(0.78) 

Disease 3 Probably damaging 

1.000 

rs776747696 R791H C>T Disease (0.768) Not tolerated 

(0.00) 

Probably damaging 

(0.78) 

Disease 5 Probably damaging 

1.000 

Protein Stability 

Table 2. I-Mutant and MuPro prediction of protein stability 

rs No Allele A.A Change I MUTANT DDG<0: Decrease stability DDG>0: Increase stability MUPRO 

rs1239749266 T>A R33W Decrease -0.23 G = -0.38850363 (decrease stability) 

rs1351955222 C>T G92R Decrease -0.66 G = -0.65408468 (decrease stability) 

rs751531344 G>A P96L Decrease -0.40 G = -0.45112595 (decrease stability) 

rs771337900 G>A,C,T T109I Decrease -0.14 G = -0.76548178 (decrease stability) 

rs771337900 G>A,C,T T109L Decrease -0.56 G = -0.69065337 (decrease stability) 

rs1453994112 T>C R115G Decrease -1.22 G = -1.0691772 (decrease stability) 

rs750615659 C>T C139Y Decrease -0.11 G = -0.49250472 (decrease stability) 

rs115552198 G>A R141C Decrease -0.62 G = -0.7046264 (decrease stability) 
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rs No Allele A.A Change I MUTANT DDG<0: Decrease stability DDG>0: Increase stability MUPRO 

rs1233969548 A>G C160R Decrease -0.44 G = -1.0859065 (decrease stability) 

rs746672873 C>G C160S Decrease -0.96 G = -1.3157594 (decrease stability) 

rs34590413 G>A,C R183G Decrease -1.62 G = -1.3317802 (decrease stability) 

rs201429780 C>T R183Q Decrease -1.17 G = -0.74334952 (decrease stability) 

rs749042805 T>A H189L Increase 0.42 G = -0.20413367 (decrease stability) 

rs867799930 G>A P194S Decrease -1.68 G = -1.6808604 (decrease stability) 

rs760638506 C>A,G D195Y Decrease -0.12 G = -0.7612616 (decrease stability) 

rs760638506 C>A,G D195H Decrease -0.64 G = -1.1839049 (decrease stability) 

rs61738614 A>C L206R Decrease -1.59 G=1.8170598 (decrease stability) 

rs1463096581 G>A R213C Decrease -0.99 G = 0.1761224 (increase stability) 

rs1178976963 C>A C227F Decrease -0.27 G = -0.59490481 (decrease stability) 

rs1161256976 C>T G230D Decrease -0.86 G = -0.58019915 (decrease stability) 

rs754406296 C>T C231Y Decrease -0.05 G = -0.76922898 (decrease stability) 

rs374877682 C>T G232E Decrease -0.64 G = -0.56474969 (decrease stability) 

rs756892218 C>T C238Y Decrease -0.01 G = -0.96826512 (decrease stability) 

rs763704356 A>G,T Y242H Decrease -1.25 G = -0.97508184 (decrease stability) 

rs763704356 A>G,T Y242N Decrease -1.39 G = -0.89290573 (decrease stability) 

rs1230924605 A>G L246S Decrease -2.09 G = -2.2980572 (decrease stability) 

rs72650670 G>A,T R266W Decrease -0.40 G = -0.41369156 (decrease stability) 

rs1280005604 A>C L289R Decrease -2.04 G = -1.7876981 (decrease stability) 

rs368366403 G>A R791C Decrease -1.11 G = -0.87567829 (decrease stability) 

rs776747696 C>T R791H Decrease -1.39 G = -1.2490775 (decrease stability) 

Functional Analysis 

Table 3. Prediction of functional impact of nsSNPs using MutPred 

A.A Change MutPred score A.A Change MutPred score 

R33W 0.196 D195H 0.784 

G92R 0.938 L206R 0.840 

P96L 0.647 R213C 0.692 

T109I 0.873 C227F 0.967 

T109L 0.871 G230D 0.925 

R115G 0.925 C231Y 0.853 

C139Y 0.913 G232E 0.923 

R141C 0.469 D195H 0.784 

C160R 0.834 Y242H 0.845 

C160S 0.710 Y242N 0.932 

R183G 0.840 L246S 0.721 

R183Q 0.697 R266W 0.870 

H189L 0.826 L289R 0.838 

P194S 0.693 R791C 0.788 

D195Y 0.836 R791H 0.725 

Table 4. RMSD and TM align score of harmful nsSNPs 

A.A Change TM Align Score RMSD A.A Change TM Align Score RMSD 

R33W 4.08 0.83265 L206R 3.14 0.75918 

G92R 3.28 0.81543 R213C 2.82 0.78004 

P96L 3.90 0.73758 C227F 3.91 0.81879 

T109I 3.93 0.76788 G230D 3.78 0.79820 

T109L 3.33 0.78685 C231Y 3.39 0.78746 

C139Y 7.06 0.81543 G232E 3.38 0.86057 

R141C 3.85 0.69297 C238Y 3.56 0.80656 

C160R 3.56 0.74357 Y242H 4.46 0.80176 

C160S 3.39 0.79410 Y242N 3.74 0.81314 

R183G 3.72 0.79360 L246S 2.91 0.79931 

R183Q 3.69 0.79333 R266W 3.68 0.79166 

H189L 3.08 0.76921 L289R 3.63 0.79791 

P194S 2.83 0.77411 R791C 3.89 0.76935 

D195Y 3.05 0.78802 R791H 3.70 0.72214 

D195H 3.56 0.72915    

 

Post-Transcriptional Modifications 

Table 5. Prediction of Methylation sites in PTPN22 protein via GPS3.0 and NetPhos3.1 

Position Peptide Met-Types Score 

799 FSKPKGPRNPPPTWN R.mono 17.69 

Table 6. NetPhos and GPS 3.0 predictions 

NetPhos 3.1 Position Score Kinase GPS 3.0 PEPTIDE KINASE SCORE 

Serine 16 0.968 unsp KFLDEAQSKKITKEE AGC 0.6959 

Serine 35 0.994 unsp FLKLKRQSTKYKADK AGC 0.5828 

Serine 69 0.499 cdc2 DILPYDYSRVELSLI AGC 0.3874 

Serine 74 0.704 Unsp DYSRVELSLITSDED AGC 0.5638 

Serine 78 0.993 unsp VELSLITSDEDSSYI AGC 0.2808 

Serine 107 0.973 unsp IATQGPLSTTLLDFW AGC 0.1709 

Serine 121 0.468 CaM-II WRMIWEYSVLIIVMA AGC 0.3832 
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NetPhos 3.1 Position Score Kinase GPS 3.0 PEPTIDE KINASE SCORE 

Serine 157 0.606 unsp QLEFGPFSVSCEAEK AGC 0.3031 

Serine 159 0.896 unsp EFGPFSVSCEAEKRK AGC 0.3254 

Serine 167 0.994 unsp CEAEKRKSDYIIRTL AGC 0.4887 

Serine 180 0.958 unsp TLKVKFNSETRTIYQ AGC 0.4062 

Serine 200 0.987 unsp RCYQEDDSVPICIHC AGC 0.3601 

Serine 220 0.469 Cdc2 VPICIHCSAGCGRTG AGC 0.4839 

Serine 228 0.464 GSK3 GIIPENFSVFSLIRE AGC 0.4477 

Serine 257 0.448 GSK3 PENFSVFSLIREMRT AGC 0.3908 

Serine 260 0.590 CaM-II EMRTQRPSLVQTQQ AGC 0.3786 

Serine 271 0.981 unsp DVIRDKHSGTESQAK AGC 0.4798 

Serine 302 0.996 unsp DKHSGTESQAKHCIP AGC 0.3410 

Serine 306 0.649 DNAPK TKMEIKESSSFDFRT AGC 0.5332 

Serine 351 0.813 unsp KMEIKESSSFDFRTS AGC 0.5496 

Serine 352 0.986 unsp MEIKESSSFDFRTSE AGC 0.5465 

Serine 353 0.607 unsp SSFDFRTSEISAKEE AGC 0.6019 

Serine 359 0.994 unsp DFRTSEISAKEELVL AGC 0.4943 

Serine 362 0.997 unsp DFLELNYSFDKNADT AGC 0.2688 

Serine 386 0.473 cdc2 SLLFEGCSNSKPVNA AGC 0.2168 

Serine 426 0.531 cdc2 LFEGCSNSKPVNAAG AGC 0.4091 

Serine 428 0.567 cdc2 AAGRYFNSKVPITRT AGC 0.4439 

Serine 440 0.455 cdc2 VPITRTKSTPFELIQ AGC 0.4644 

Serine 449 0.972 unsp RETKEVDSKENFSYL AGC 0.3689 

Serine 465 0.996 unsp QKVMHVSSAELNYSL AGC 0.1540 

Serine 494 0.448 GSK3 SSAELNYSLPYDSKH AGC 0.4225 

Serine 500 0.459 DNAPK NYSLPYDSKHQIRNA AGC 0.4110 

Serine 505 0.800 unsp KHQIRNASNVKHHDS AGC 0.4814 

Serine 513 0.512 cdc2 SNVKHHDSSALGVYS AGC 0.5439 

Serine 520 0.627 PKA NVKHHDSSALGVYSY AGC 0.4285 

Serine 600 0.494 cdc2 SSLLNQESAVLATAP AGC 0.3486 

Serine 643 0.578 PKC PNVPKSLSSAVKVKI AGC 0.1609 

Serine 644 0.696 PKC NVPKSLSSAVKVKIG AGC 0.2731 

Serine 653 0.854 unsp VKVKIGTSLEWGGTS AGC 0.1762 

Serine 668 0.613 unsp EPKKFDDSVILRPSK AGC 0.6106 

Serine 674 0.598 PKC DSVILRPSKSVKLRS AGC 0.4659 

Serine 676 0.830 PKC VILRPSKSVKLRSPK AGC 0.4019 

Serine 681 0.996 unsp SKSVKLRSPKSELHQ AGC 0.3732 

Serine 684 0.906 unsp VKLRSPKSELHQDRS AGC 0.4351 

Serine 691 0.538 PKC SELHQDRSSPPPPLP AGC 0.2852 

Serine 692 0.987 unsp ELHQDRSSPPPPLPE AGC 0.3263 

Serine 704 0.517 CKI LPERTLESFFLADED AGC 0.3640 

Serine 732 0.526 cdc2 YPDTMENSTSSKQTL AGC 0.1536 

Serine 734 0.989 unsp DTMENSTSSKQTLKT AGC 0.1623 

Serine 735 0.547 CKI TMENSTSSKQTLKTP AGC 0.4578 

Serine 745 0.984 unsp TLKTPGKSFTRSKSL AGC 0.3174 

Serine 749 0.626 PKC PGKSFTRSKSLKILR AGC 0.3311 

Serine 751 0.995 unsp KSFTRSKSLKILRNM AGC 0.2999 

Serine 765 0.715 PKC MKKSICNSCPPNKPA AGC 0.4823 

Serine 781 0.459 GSK3 SVQSNNSSSFLNFGF AGC 0.4045 

Serine 782 0.501 cdc2 VQSNNSSSFLNFGFA AGC 0.2910 

Serine 793 0.899 Unsp FGFANRFSKPKGPRN AGC 0.4361 

Threonine 20 0.600 PKG EAQSKKITKEEFANE AGC 0.6997 

Threonine 36 0.970 unsp LKLKRQSTKYKADKT AGC 0.7209 

Threonine 43 0.445 Cdc2 TKYKADKTYPTTVAE AGC 0.3965 

Threonine 77 0.619 CKII RVELSLITSDEDSSY AGC 0.3015 

Threonine 102 0.610 DNAPK GPKAYIATQGPLSTT AGC 0.4343 

Threonine 109 0.511 cdc2 TQGPLSTTLLDFWRM AGC 0.1513 

Threonine 173 0.902 PKC KSDYIIRTLKVKFNS AGC 0.4708 

Threonine 182 0.469 PKG KVKFNSETRTIYQFH AGC 0.5079 

Threonine 184 0.551 PKC KFNSETRTIYQFHYK AGC 0.5756 

Threonine 234 0.435 CaM-II CSAGCGRTGVICAID AGC 0.4431 

Threonine 243 0.452 unsp VICAIDYTWMLLKDG AGC 0.1624 

Threonine 267 0.981 PKC SLIREMRTQRPSLVQ AGC 0.3904 

Threonine 275 0.567 unsp QRPSLVQTQEQYELV AGC 0.6010 

Threonine 304 0.549 PKC IRDKHSGTESQAKHC AGC 0.3483 

Threonine 332 0.899 PKC SPNLPKSTTKAAKMM AGC 0.3759 

Threonine 333 0.800 PKC PNLPKSTTKAAKMMN AGC 0.1559 

Threonine 344 0.635 PKC KMMNQQRTKMEIKES AGC 0.4856 

Threonine 358 0.438 GSK3 SSSFDFRTSEISAKE AGC 0.5875 

Threonine 376 0.462 cdc2 LHPAKSSTSFDFLEL AGC 0.2359 

Threonine 393 0.522 PKC SFDKNADTTMKWQK AGC 0.1757 

Threonine 399 0.659 PKC DTTMKWQTKAFPIVG AGC 0.1524 

Threonine 445 0.604 PKC FNSKVPITRTKSTPF AGC 0.4234 

Threonine 447 0.459 CaM-II SKVPITRTKSTPFEL AGC 0.3722 

Threonine 450 0.973 unsp PITRTKSTPFELIQQ AGC 0.4024 

Threonine 460 0.804 unsp ELIQQRETKEVDSKE AGC 0.6583 

Threonine 545 0.642 PKC SSWPPSGTSSKMSD AGC 0.1581 

Threonine 605 0.456 cdc2 QESAVLATAPRIDDE AGC 0.4996 

Threonine 621 0.742 unsp PPPLPVWTPESFIVV AGC 0.1608 
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NetPhos 3.1 Position Score Kinase GPS 3.0 PEPTIDE KINASE SCORE 

Threonine 652 0.538 PKC AVKVKIGTSLEWGGT AGC 0.1632 

Threonine 659 0.716 unsp TSLEWGGTSEPKKFD AGC 0.4669 

Threonine 701 0.528 PKG PPPLPERTLESFFLA AGC 0.3111 

Threonine 733 0.530 PKC PDTMENSTSSKQTLK AGC 0.1630 

Threonine 738 0.889 PKC NSTSSKQTLKTPGKS AGC 0.6408 

Threonine 741 0.608 cdk5 SSKQTLKTPGKSFTR AGC 0.4392 

Threonine 747 0.547 PKC KTPGKSFTRSKSLKI AGC 0.4779 

Threonine 804 0.481 GSK3 GPRNPPPTWNI**** AGC 0.3687 

Table 7. BDM-PUB predictions for Ubiquitination 

Peptide Position Score Threshold 

FLDEAQSKKITKEEF 17 0.93 0.3 

LDEAQSKKITKEEFA 18 0.60 0.3 

AQSKKITKEEFANEF 21 1.23 0.3 

EFANEFLKLKRQSTK 30 1.16 0.3 

ANEFLKLKRQSTKYK 32 1.46 0.3 

KLKRQSTKYKADKTY 37 0.94 0.3 

STKYKADKTYPTTVA 42 1.13 0.3 

YPTTVAEKPKNIKKN 51 0.93 0.3 

TTVAEKPKNIKKNRY 53 0.95 0.3 

AEKPKNIKKNRYKDI 56 2.31 0.3 

EKPKNIKKNRYKDIL 57 1.05 0.3 

SVSCEAEKRKSDYII 164 1.55 0.3 

SCEAEKRKSDYIIRT 166 0.74 0.3 

DYIIRTLKVKFNSET 175 0.63 0.3 

IIRTLKVKFNSETRT 177 0.33 0.3 

NAVLELFKRQMDVIR 291 0.76 0.3 

QMDVIRDKHSGTESQ 300 0.55 0.3 

SGTESQAKHCIPEKN 309 0.83 0.3 

AKHCIPEKNHTLQAD 315 1.44 0.3 

SYSPNLPKSTTKAAK 330 1.69 0.3 

NLPKSTTKAAKMMNQ 334 1.17 0.3 

KSTTKAAKMMNQQRT 337 2.33 0.3 

MMNQQRTKMEIKESS 345 0.97 0.3 

ELVLHPAKSSTSFDF 373 0.90 0.3 

IVGEPLQKHQSLDLG 411 0.30 0.3 

FEGCSNSKPVNAAGR 429 1.00 0.3 

LIQQRETKEVDSKEN 461 0.43 0.3 

YSLPYDSKHQIRNAS 506 0.40 0.3 

IRNASNVKHHDSSAL 516 0.36 0.3 

PPSGTSSKMSLDLPE 548 2.77 0.3 

EFSPNVPKSLSSAVK 640 0.87 0.3 

KSLSSAVKVKIGTSL 647 2.13 0.3 

LSSAVKVKIGTSLEW 649 0.68 0.3 

WGGTSEPKKFDDSVI 663 0.74 0.3 

GGTSEPKKFDDSVIL 664 1.58 0.3 

SVILRPSKSVKLRSP 675 3.47 0.3 

LRPSKSVKLRSPKSE 678 3.01 0.3 

SVKLRSPKSELHQDR 683 2.39 0.3 

MENSTSSKQTLKTPG 736 3.14 0.3 

TSSKQTLKTPGKSFT 740 1.87 0.3 

QTLKTPGKSFTRSKS 744 1.89 0.3 

GKSFTRSKSLKILRN 750 1.72 0.3 

FTRSKSLKILRNMKK 753 1.64 0.3 

LKILRNMKKSICNSC 759 0.99 0.3 

GFANRFSKPKGPRNP 794 1.54 0.3 

ANRFSKPKGPRNPPP 796 1.23 0.3 
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Figure 1: A 3D bar chart illustrating SNPs linked with the PTPN22 gene, showing the distribution across categories: intronic (13,124, red bar), missense variants (563, 

green bar), 3' prime UTR variants (229, purple bar), synonymous variants (218, orange bar), and 5' prime UTR variants (36, blue bar). The y-axis scales up to 2000 

for visual emphasis on larger categories. 

 

Figure 2: A pie chart showing the prediction of damaging nsSNPs via several tools, with segments labeled: SNP and GO (157, orange), SIFT (193, red), PANTHER 

(61, green), PhD SNP (133, purple), and PolyPhen 2 (30, blue). 

 

 

Figure 3: A detailed Consurf visualization for harmful nsSNPs, showing the PTPN22 protein sequence with conservation scale (1-9, variable to conserved) and 3D 

structure colored by conservation (cyan: variable, magenta: conserved), with annotations for exposed/buried residues and a legend explaining symbols for 

functional/structural importance. 
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Figure 4: A grid of 3D structures for deleterious nsSNPs generated by I-TASSER, displaying individual models for each variant (e.g., R33W, G92R) with wild-type 

and mutant forms highlighted in different colors, including labels for structural changes and a scale bar for orientation. 

Gene-Gene Interaction 

 

Figure 5: A network diagram of gene-gene interactions for PTPN22 using GeneMANIA, with central PTPN22 node connected to others (e.g., TRAF3, ZAP70) via 

colored edges: pink (physical), orange (co-expression), blue (co-localization), green (genetic), yellow (shared domain), and purple (pathway). 

Protein-Protein Interaction 

 

Figure 6 Placeholder: A network diagram of protein-protein interactions for PTPN22 using STRING, with PTPN22 as the central red node linked to proteins like 

TRAF3, CSK, ZAP70, CD4, and HLA variants via multicolored edges representing interaction types, including a legend for node and edge meanings. 
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Figure 7: A pie chart illustrating the distribution of S/T/Y p-sites: Serine (57%, yellow segment), Threonine (27%, green segment), and Tyrosine (17%, blue segment). 
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