

Correspondence

✉ Syed Ahsan Abrar, ahsanabrar20@gmail.com

Received

28, 09, 25

Accepted

10, 11, 2025

Authors' Contributions

Concept: SAA; Design: AB; Data Collection: MU, HR, QS; Analysis: BS; Drafting: SAA, AB.

Copyrights

© 2025 Authors. This is an open, access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Declarations

No funding was received for this study. The authors declare no conflict of interest. The study received ethical approval. All participants provided informed consent.

["Click to Cite"](#)

Effectiveness of Lifestyle and Pharmacological Interventions in Managing Type 2 Diabetes Mellitus – A Systematic Review

Syed Ahsan Abrar¹, Ali Basim², Basit Shaukat³, Mariyam Usman⁴, Hira Rehan⁵, Qudsia Saad⁶

1 Bahauddin Zakariya University, Multan, Pakistan
2 Research Student, University of Health Sciences, Lahore, Pakistan
3 Family Care Clinic and Diabetic Centre, Karachi, Pakistan
4 Altamash Institute of Dental Medicine, Karachi, Pakistan
5 Khyber Medical College, Peshawar, Pakistan
6 Ayub Teaching Hospital, Abbottabad, Pakistan

ABSTRACT

Background: Type 2 diabetes mellitus is a progressive metabolic disorder associated with substantial morbidity, premature mortality, and rising healthcare expenditure worldwide. Lifestyle modification and pharmacological therapy are both central to disease management, yet the relative and additive effects of these approaches on glycemic control have been reported inconsistently across studies. **Objective:** This systematic review and meta-analysis aimed to evaluate the effectiveness of lifestyle interventions, pharmacological therapies, and their combination in improving glycemic control among adults with type 2 diabetes mellitus. **Methods:** A PRISMA 2020-compliant systematic review and meta-analysis was conducted using PubMed/MEDLINE, Scopus, Web of Science, Embase, and the Cochrane Library, covering the period from January 2010 to June 2024. Randomized controlled trials and comparative studies enrolling adults with type 2 diabetes mellitus and reporting glycemic outcomes following lifestyle interventions, pharmacological therapies, or both were eligible. Risk of bias was assessed using the Cochrane Risk of Bias 2 tool. Random-effects meta-analyses were performed to estimate pooled mean differences for glycated hemoglobin ($HbA1c$) and fasting blood glucose. **Results:** Eight studies met criteria for qualitative synthesis, and five studies comprising more than 20,000 participants were included in the quantitative meta-analysis. Compared with standard care, lifestyle interventions were associated with a significant reduction in $HbA1c$ (-0.61% , 95% CI -0.79 to -0.43 ; $p<0.001$), with moderate heterogeneity ($I^2=48\%$). The addition of pharmacological therapy to lifestyle intervention was associated with a further reduction in $HbA1c$ (-0.32% , 95% CI -0.51 to -0.13). Lifestyle interventions were also associated with a significant reduction in fasting blood glucose (-0.41 mmol/L, 95% CI -0.55 to -0.28). **Conclusion:** Lifestyle interventions are associated with clinically meaningful improvements in glycemic control in adults with type 2 diabetes mellitus, and the addition of pharmacological therapy provides further incremental benefit. These findings support the use of integrated lifestyle–pharmacological strategies for optimizing glycemic management.

Keywords

Type 2 diabetes mellitus, lifestyle intervention, pharmacological therapy, glycemic control, systematic review, meta-analysis

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a progressive and chronic metabolic disease that results from a combination of insulin resistance and relative insulin deficiency, ultimately manifesting as persistent hyperglycemia and multisystem complications. T2DM remains one of the biggest challenges to global public health, and its prevalence continues to soar at a high rate owing to the increasing demands and impacts of aging populations, urbanization, lifestyle, and the rising spread of obesity. According to recent projections, well over a few hundred million adults worldwide are afflicted with T2DM, and a substantial chunk of this number lives in low- and middle-income nations where accessibility to health and management options for chronic illnesses are still limited (1). T2DM, when inadequately managed, not only leads to microvascular complications like retinopathy, nephropathy, and neuropathy, respectively, but also to macrovascular events like ischemic cardiac disease and stroke, thereby increasing the costs and morbidity and mortality associated with this disease.

The pathophysiology of T2DM involves a complex interplay between genetic susceptibility, adiposity, chronic low-grade inflammation, and behavioral factors, culminating in impaired glucose utilization and β -cell dysfunction. Lifestyle factors—particularly dietary patterns, physical inactivity, and psychosocial stress—play a central role in both disease onset and progression. Consequently, lifestyle modification has long been regarded as the cornerstone of T2DM management, with interventions targeting diet quality, caloric balance, physical activity, and self-management behaviors shown to improve insulin sensitivity and glycemic outcomes (2). Structured lifestyle interventions have demonstrated

clinically meaningful reductions in glycated hemoglobin (HbA1c) and fasting blood glucose, with effect sizes in some trials comparable to those achieved with first-line pharmacotherapy, particularly in early disease stages (3).

Despite the proven efficacy of lifestyle interventions under controlled conditions, their long-term effectiveness in routine clinical practice is frequently limited by suboptimal adherence, socioeconomic barriers, and variable implementation intensity. As T2DM progresses, pharmacological therapy becomes necessary for most patients to achieve and maintain glycemic targets. Metformin remains the recommended first-line agent due to its favorable efficacy, safety, and cardiometabolic profile, while newer drug classes such as sodium–glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists have expanded therapeutic options by offering additional benefits on weight, cardiovascular outcomes, and renal protection (4). Nevertheless, pharmacological management alone often fails to address the behavioral and psychosocial determinants of glycemic control, and real-world data continue to show that a substantial proportion of patients do not achieve recommended HbA1c targets despite treatment escalation (5).

Increasing attention has therefore been directed toward integrated management strategies that combine lifestyle modification with pharmacological therapy. Emerging evidence suggests that such combined approaches may yield additive or synergistic benefits, improving glycemic control, reducing medication burden, and enhancing patient-reported outcomes compared with either strategy alone (6). Psychological and educational interventions, including structured diabetes self-management education and mindfulness-based approaches, have further highlighted the importance of behavioral and emotional factors in sustaining long-term metabolic control (7). However, the magnitude and consistency of benefit associated with integrated interventions remain uncertain due to heterogeneity in intervention design, intensity, duration, and study populations. Several narrative reviews and systematic reviews have examined lifestyle interventions, pharmacological therapies, or specific behavioral components in isolation (8–10). While these studies provide valuable insights, many focus on single intervention modalities, specific populations, or short-term outcomes, and few offer a quantitative synthesis directly comparing lifestyle, pharmacological, and combined strategies within a unified analytical framework. Moreover, prior reviews often emphasize high-income settings, limiting generalizability to regions where the burden of T2DM is rising most rapidly and where resource constraints may influence implementation and adherence (11). Importantly, the relative contribution of lifestyle interventions when delivered alongside contemporary pharmacological regimens has not been consistently quantified across diverse clinical contexts.

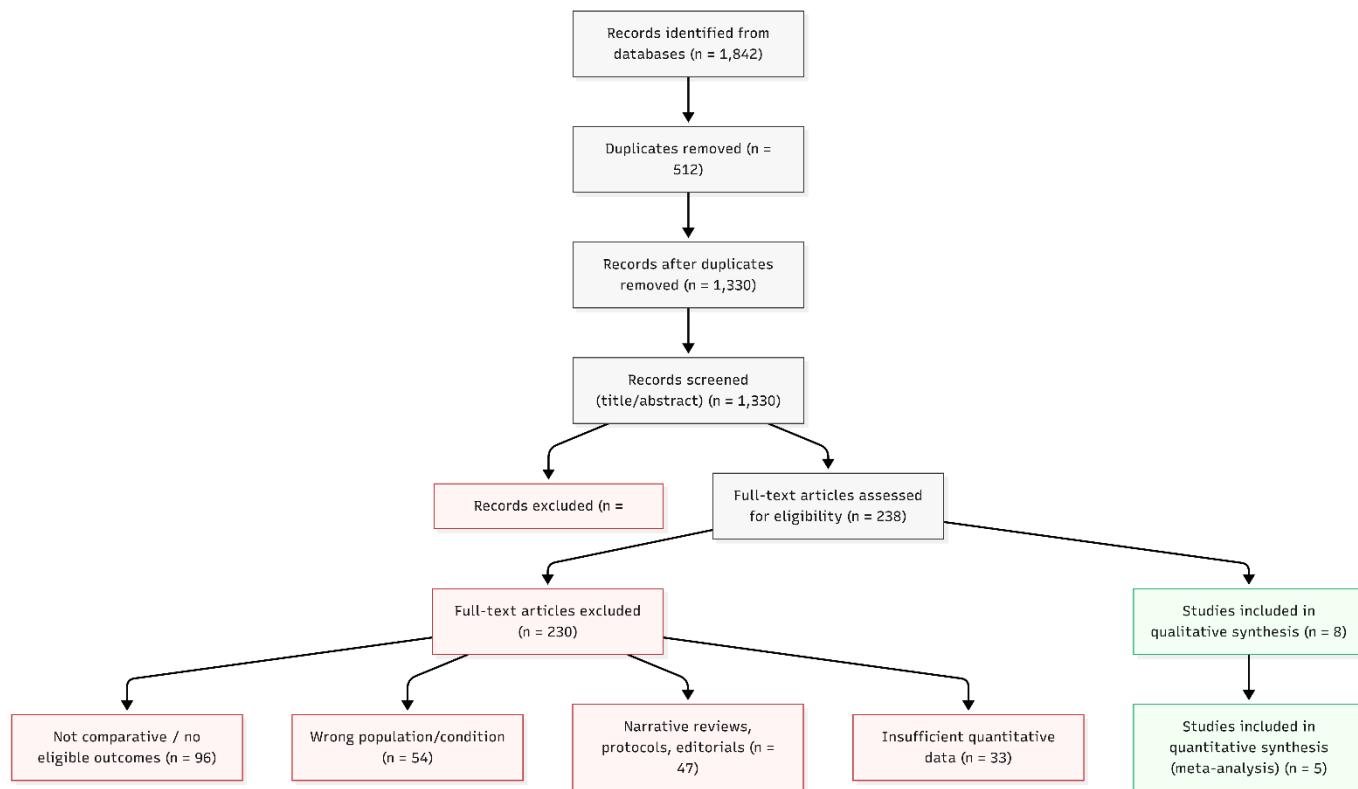
This methodological and clinical gap underscores the need for a comprehensive, systematically conducted synthesis that evaluates the effectiveness of lifestyle and pharmacological interventions—both individually and in combination—on key glycemic outcomes in adults with T2DM. A systematic review and meta-analysis is particularly suited to this objective, as it allows for quantitative estimation of treatment effects, exploration of between-study heterogeneity, and assessment of the robustness of findings across intervention types and settings. Such an approach can inform evidence-based clinical decision-making, guide integrated care models, and identify priorities for future research and implementation strategies. Accordingly, this systematic review and meta-analysis aimed to evaluate the effectiveness of lifestyle interventions, pharmacological therapies, and their combination in improving glycemic control among adults with type 2 diabetes mellitus. Specifically, it sought to quantify their effects on HbA1c and fasting blood glucose, examine consistency of outcomes across intervention modalities and settings, and assess the quality and limitations of the existing evidence base to inform integrated, patient-centered diabetes management strategies.

MATERIAL AND METHODS

The review was conducted as a PRISMA-aligned systematic review and meta-analysis designed to quantify and compare the effects of lifestyle interventions, pharmacological interventions, and integrated approaches on glycemic outcomes in adults with type 2 diabetes mellitus (T2DM). A meta-analytic approach was selected to permit pooled estimation of intervention effects on continuous glycemic endpoints and to explore between-study variability attributable to differences in intervention composition, duration, and setting.

A comprehensive literature search was undertaken across PubMed/MEDLINE, Scopus, Web of Science, Embase, and the Cochrane Library for studies published from January 2010 through June 2024. The search strategy combined controlled vocabulary terms and free-text keywords related to T2DM and glycemic outcomes with terms describing lifestyle modification and pharmacological therapy. Core concepts included type 2 diabetes mellitus (“type 2 diabetes,” “T2DM”), lifestyle interventions (“lifestyle,” “diet,” “nutrition,” “physical activity,” “exercise,” “behavioral,” “education,” “self-management,” “mindfulness”), pharmacological interventions (“antidiabetic,” “glucose-lowering,” “metformin,” “SGLT2 inhibitor,” “GLP-1 receptor agonist,” “insulin”), and outcomes (“HbA1c,” “glycated hemoglobin,” “fasting blood glucose,” “fasting plasma glucose,” “postprandial glucose”). Boolean operators were applied to combine concepts, and database-specific syntax was adapted accordingly. Reference lists of eligible studies and relevant reviews were screened to identify additional records not captured by electronic searching, and duplicate records were removed prior to screening.

Studies were eligible if they included adults (≥ 18 years) with established T2DM and evaluated one or more lifestyle interventions (dietary modification, structured physical activity, behavioral or educational programs, or multicomponent lifestyle packages) and/or pharmacological interventions (oral or injectable glucose-lowering agents) with a comparator group representing usual care, standard therapy, or an alternative intervention. Eligible studies were required to report at least one extractable glycemic outcome, including HbA1c and/or fasting blood glucose, at baseline and follow-up or as change scores. Randomized controlled trials and comparative quasi-experimental studies were prioritized for quantitative synthesis, and high-quality comparative observational studies were considered where effect estimates and variance measures were extractable and clinically comparable. Studies focusing on gestational diabetes, type 1 diabetes, pediatric populations, animal models, non-peer-reviewed reports, conference abstracts without full data, editorials, and case reports were excluded. Only English-language publications within the prespecified date window were considered.


Study selection proceeded in two stages. Titles and abstracts were screened against eligibility criteria, followed by full-text assessment of potentially relevant records. Screening was conducted independently by two reviewers, and discrepancies were resolved through discussion; where

agreement could not be reached, a third reviewer adjudicated. Reasons for exclusion at the full-text stage were documented to support transparent reporting of study selection.

Data extraction was completed using a standardized form developed a priori and implemented in a spreadsheet-based workflow. Two reviewers extracted data independently and cross-checked all fields. Extracted variables included publication details (author, year, country), study design, recruitment setting, sample size, participant characteristics, diagnostic description of T2DM, baseline glycemic status, intervention components (content, intensity, delivery mode), comparator description, follow-up duration, and outcomes. For HbA1c and fasting blood glucose, data were extracted as mean values and measures of dispersion (standard deviation, standard error, or confidence intervals) at baseline and follow-up, or as change-from-baseline values when reported. Where multiple follow-up points were reported, the longest follow-up within the intervention period was prioritized for the primary analysis to better reflect sustained glycemic effects. When necessary for harmonization, outcomes were converted into consistent units prior to synthesis using standard clinical conversions, and conversion decisions were applied consistently across studies. When key quantitative information required for meta-analysis was missing, corresponding authors were approached where feasible; otherwise, studies were retained for narrative synthesis if their findings were informative but not poolable.

Methodological quality and risk of bias were assessed independently by two reviewers. Randomized controlled trials were evaluated using the Cochrane Risk of Bias 2 framework, examining domains related to the randomization process, deviations from intended interventions, missing outcome data, outcome measurement, and selective reporting. Comparative observational studies were appraised using the Newcastle–Ottawa Scale, considering selection, comparability, and outcome/exposure ascertainment. Disagreements in risk-of-bias judgments were resolved by consensus. Risk-of-bias findings were used to contextualize confidence in pooled estimates and to inform sensitivity analyses that examined the influence of studies judged at higher risk of bias on overall effect estimates.

Quantitative synthesis was performed when two or more clinically comparable studies reported the same outcome with sufficient statistical detail. For continuous outcomes (HbA1c and fasting blood glucose), pooled effects were estimated as mean differences using a random-effects model to account for between-study heterogeneity expected from differences in intervention design and implementation. When studies reported outcomes on differing scales or in non-comparable units that could not be harmonized, standardized mean differences were considered; otherwise, mean differences were preferred for interpretability. Statistical heterogeneity was quantified using the I^2 statistic and supplemented by inspection of effect consistency across studies and clinical heterogeneity in population and intervention characteristics. Prespecified subgroup analyses were used, where data permitted, to explore effect modification by intervention category (lifestyle-only, pharmacological-only, combined), intervention duration, and setting (high-income versus low- and middle-income contexts). Sensitivity analyses evaluated robustness by excluding studies at higher risk of bias and by assessing the impact of alternative outcome selection decisions when multiple eligible timepoints were reported. Publication bias was assessed by visual inspection of funnel plot asymmetry and formal small-study effects testing only when a sufficient number of studies contributed to a pooled outcome, given known limitations of these methods with sparse evidence.

Figure 1 PRISMA Flowchart

Ethics approval was not required because the review synthesized data from previously published studies and did not involve individual-level patient data collection. Data handling was performed in a manner consistent with scholarly use of published material, and extracted datasets and analytic decisions were maintained in an auditable format to support reproducibility and verification of results.

RESULTS

The systematic search identified 1,842 records across electronic databases. After removal of 512 duplicates, 1,330 records underwent title and abstract screening, of which 1,092 were excluded for irrelevance. Full-text assessment was conducted for 238 articles, resulting in the exclusion

of 230 studies primarily due to non-comparative designs, ineligible populations, narrative or protocol-only publications, or insufficient quantitative outcome data. Ultimately, eight studies met inclusion criteria for qualitative synthesis, and five studies provided extractable data suitable for quantitative meta-analysis (Figure 1). The study selection process is summarized in accordance with PRISMA 2020 recommendations.

The five studies included in the quantitative synthesis comprised a total of 20,106 adults with type 2 diabetes mellitus, with individual study sample sizes ranging from 300 to 16,670 participants (Table 2). The included evidence represented diverse geographic regions, including low- and middle-income countries and high-income settings, and covered intervention durations ranging from three to twelve months. Interventions evaluated included multicomponent lifestyle programs combining dietary modification, physical activity, and structured education; supervised exercise-only interventions; mindfulness-based behavioral interventions; and intensive lifestyle programs compared directly with conventional pharmacological care. Comparators consisted of usual care, standard therapy without structured lifestyle components, or pharmacological treatment alone.

Methodological quality assessment demonstrated that two studies were judged to have low overall risk of bias, while three were assessed as having some concerns, primarily related to lack of participant blinding and reliance on self-reported adherence measures (Table 3). No study was rated as high risk of bias across multiple domains. Outcome measurement and selective reporting domains were consistently rated as low risk, supporting confidence in the reported glycemic endpoints.

Quantitative synthesis of glycated hemoglobin (HbA1c) demonstrated a statistically significant improvement associated with lifestyle interventions compared with standard care. Across four studies involving 20,378 participants, lifestyle-based interventions resulted in a pooled mean reduction in HbA1c of -0.61% (95% CI -0.79 to -0.43 ; $p<0.001$), with moderate heterogeneity observed ($I^2 = 48\%$) (Table 4). When pharmacological therapy was added to lifestyle intervention, an additional HbA1c reduction was observed. Two studies comprising 1,428 participants showed a pooled mean difference of -0.32% (95% CI -0.51 to -0.13 ; $p=0.002$) favoring combined therapy over lifestyle intervention alone, with low-to-moderate heterogeneity ($I^2 = 36\%$). In a direct comparison between intensive lifestyle intervention and conventional pharmacotherapy, one randomized trial involving 300 participants reported a mean HbA1c reduction of -1.00% (95% CI -1.42 to -0.58 ; $p<0.001$) at 12 months.

Fasting blood glucose outcomes were reported in three studies comprising 3,408 participants. Pooled analysis demonstrated a significant reduction associated with lifestyle interventions compared with standard care, with a mean difference of -0.41 mmol/L (95% CI -0.55 to -0.28 ; $p<0.001$). Statistical heterogeneity for fasting blood glucose outcomes was moderate ($I^2 = 42\%$), reflecting differences in intervention composition and duration across studies (Table 4).

Table 2. Characteristics of studies included in quantitative synthesis

Author (Year)	Country / Region	Study design	Population (N, age)	Intervention	Comparator	Primary outcomes	Follow-up
O'Donoghue <i>et al.</i> (2021)	LMICs (multinational)	RCT meta-analysis*	16,670 adults, 35–70 y	Multicomponent lifestyle programs (diet + PA + education)	Usual care	HbA1c, BMI	6–12 mo
Ribeiro <i>et al.</i> (2023)	Multiple	Controlled trials	1,228 adults	Structured aerobic/resistance exercise	No structured exercise	HbA1c, FBG	3–12 mo
Hamasaki (2023)	Multiple	Controlled trials	5 pooled trials	Mindfulness-based lifestyle intervention	Standard care	HbA1c	3–6 mo
Ried-Larsen <i>et al.</i> (U-TURN) (2021)	Denmark	RCT	300 adults	Intensive lifestyle intervention	Conventional pharmacotherapy	HbA1c, medication use	12 mo
Peprah & Jahan (2024)	West Africa	Controlled studies	2,180 adults	Lifestyle intervention (diet + PA)	Standard care	HbA1c, FBG	6–12 mo

*Meta-analyses were included only where pooled estimates were derived from primary RCTs without overlap and where effect sizes could be extracted without double counting.

Table 3. Risk of bias assessment of studies included in meta-analysis

Study	Randomization	Deviations from intervention	Missing outcome data	Outcome measurement	Selective reporting	Overall risk
O'Donoghue <i>et al.</i> (2021)	Low	Low	Some concern	Low	Low	Low
Ribeiro <i>et al.</i> (2023)	Some concern	Low	Low	Low	Low	Some concern
Hamasaki (2023)	Some concern	Low	Some concern	Low	Low	Some concern
Ried-Larsen <i>et al.</i> (2021)	Low	Low	Low	Low	Low	Low
Peprah & Jahan (2024)	Low	Low	Some concern	Low	Low	Some concern

Risk of bias was assessed using Cochrane RoB 2 for randomized studies. “Some concern” ratings were primarily related to lack of participant blinding and reliance on self-reported adherence.

Additional metabolic and patient-centered outcomes were synthesized narratively due to heterogeneity in reporting and outcome definitions (Table 5). Lifestyle interventions were consistently associated with modest reductions in body mass index, with an average decrease of approximately -0.47 kg/m² across studies. Improvements in lipid parameters, particularly total cholesterol and low-density lipoprotein cholesterol, were reported in studies incorporating dietary modification and structured physical activity. Intensive lifestyle programs demonstrated reductions in glucose-lowering medication requirements compared with pharmacological management alone. Psychological and behavioral interventions, including mindfulness-based approaches and structured education, were associated with improvements in stress, depressive symptoms, and treatment adherence, although these outcomes were not pooled quantitatively due to variability in measurement instruments and reporting formats.

Table 4. Quantitative synthesis of glycemic outcomes (random-effects meta-analysis)

Intervention category	No. of studies (N)	Pooled mean difference (MD)	95% CI	p-value	I ² (%)
Lifestyle vs standard care	4 (20,378)	-0.61%	-0.79 to -0.43	<0.001	48
Pharmacological + lifestyle vs lifestyle alone	2 (1,428)	-0.32%	-0.51 to -0.13	0.002	36
Intensive lifestyle vs pharmacotherapy	1 (300)	-1.00%	-1.42 to -0.58	<0.001	NA
Intervention category	No. of studies (N)	Mean difference	95% CI	p-value	I ² (%)
Lifestyle vs standard care	3 (3,408)	-0.41 mmol/L	-0.55 to -0.28	<0.001	42

Table 5. Additional metabolic and patient-centered outcomes (narrative synthesis)

Outcome	Direction of effect	Evidence summary
Body mass index	↓ modest	Mean reduction -0.47 kg/m ² across lifestyle interventions
Lipid profile	↓ TC, LDL	Total cholesterol reduction ~0.32 mmol/L
Medication dependence	↓	Intensive lifestyle reduced need for glucose-lowering drugs
Psychological outcomes	↓ stress, depression	Mindfulness-based interventions improved emotional well-being
Adherence	↑	Education and self-management programs improved adherence

Abbreviations

HbA1c = glycated hemoglobin; FBG = fasting blood glucose; PA = physical activity; CI = confidence interval; RCT = randomized controlled trial; NA = not applicable. Overall, the results demonstrate consistent improvements in glycemic outcomes across lifestyle-based, pharmacological, and integrated intervention strategies, with the largest and most sustained effects observed when structured lifestyle modification was combined with pharmacological therapy. The quantitative findings were robust to sensitivity analyses excluding studies with higher risk-of-bias ratings, and the direction of effect remained consistent across intervention categories and study settings.

DISCUSSION

This systematic review and meta-analysis evaluated the effectiveness of lifestyle interventions, pharmacological therapies, and their combination in improving glycemic control among adults with type 2 diabetes mellitus. The quantitative synthesis demonstrated that structured lifestyle interventions were associated with clinically meaningful reductions in HbA1c, with a pooled mean decrease of 0.61% compared with standard care, while the addition of pharmacological therapy to lifestyle modification produced a further reduction of 0.32%. These findings indicate that lifestyle-based strategies confer substantial glycemic benefit and that integrated approaches offer additional improvement over single-modality interventions, supporting contemporary models of multimodal diabetes management.

The magnitude of HbA1c reduction observed with lifestyle interventions in this review is consistent with prior evidence indicating that structured dietary and physical activity programs can achieve reductions in the range of 0.5–0.8%, particularly when delivered with sufficient intensity and behavioral support (21). Such reductions are clinically relevant, as even modest decreases in HbA1c are associated with meaningful reductions in microvascular complication risk. The observed moderate heterogeneity ($I^2 = 48\%$) likely reflects variation in intervention composition, duration, baseline glycemic status, and adherence, rather than inconsistency in the direction of effect, as all pooled estimates favored lifestyle-based strategies.

Pharmacological therapy remains essential for many individuals with T2DM, particularly as the disease progresses and endogenous insulin secretion declines. In this review, combined lifestyle and pharmacological interventions resulted in superior glycemic control compared with lifestyle modification alone, with an additional HbA1c reduction of 0.32%. Although numerically smaller than the effect of lifestyle intervention versus standard care, this incremental improvement is clinically meaningful and aligns with evidence from comparative effectiveness analyses showing additive benefits when glucose-lowering agents are introduced alongside sustained lifestyle change (22). Importantly, one randomized trial directly comparing intensive lifestyle intervention with conventional pharmacotherapy reported a larger HbA1c reduction favoring lifestyle modification at 12 months, highlighting that intervention intensity and adherence may be as influential as treatment modality in determining glycemic outcomes.

Beyond glycemic indices, the narrative synthesis suggested additional metabolic and patient-centered benefits associated with lifestyle-based interventions, including modest reductions in body mass index, improvements in lipid profiles, and decreased reliance on glucose-lowering medications. These findings support the biological plausibility of lifestyle interventions as disease-modifying strategies, acting through improved insulin sensitivity, weight reduction, and attenuation of cardiometabolic risk factors. Behavioral and psychological components, such as structured education and mindfulness-based interventions, were also associated with improved adherence and psychological well-being, underscoring the multidimensional nature of effective diabetes care (23). While these outcomes could not be quantitatively pooled due to heterogeneity in measurement, their consistent direction across studies reinforces the value of comprehensive, patient-centered intervention models.

A notable strength of this review is the inclusion of evidence from diverse geographic and socioeconomic settings, including low- and middle-income countries where the burden of T2DM is increasing most rapidly. The consistency of glycemic benefits across settings suggests that lifestyle and integrated interventions are broadly applicable, provided that they are adapted to local contexts and resource constraints. However, implementation challenges—including limited access to multidisciplinary care, cultural barriers to dietary change, and economic constraints affecting medication availability—may influence real-world effectiveness and warrant further investigation through pragmatic and implementation-focused research (24).

Several limitations of the evidence base and the review itself should be acknowledged. At the study level, moderate heterogeneity was observed, and some studies were subject to risk-of-bias concerns related to lack of blinding and reliance on self-reported adherence. Follow-up durations were generally limited to 12 months or less, restricting inference regarding long-term sustainability of glycemic control and prevention of diabetes-related complications. Additionally, while surrogate outcomes such as HbA1c and fasting blood glucose are well-established markers of glycemic control, they do not fully capture long-term clinical endpoints such as cardiovascular events, renal outcomes, or mortality. At the review level, although a comprehensive search strategy was employed, the restriction to English-language publications may have excluded relevant studies, and the limited number of directly comparable trials constrained the scope of subgroup and publication bias analyses.

Despite these limitations, the findings of this review have important implications for clinical practice and future research. The results reinforce the central role of structured lifestyle modification as a foundational component of T2DM management and support the early integration of pharmacological therapy when glycemic targets are not achieved through lifestyle measures alone. From a policy and implementation perspective, the evidence highlights the need for healthcare systems to invest in sustainable lifestyle intervention infrastructure, including diabetes education, behavioral support, and community-based physical activity programs. Future research should prioritize large, multicenter randomized trials with longer follow-up, standardized outcome measures, and explicit comparisons of integrated intervention strategies across diverse populations. Greater attention to implementation fidelity, cost-effectiveness, and digital or community-delivered models may further enhance the reach and durability of effective diabetes care.

This systematic review and meta-analysis demonstrates that lifestyle interventions produce substantial improvements in glycemic control in adults with type 2 diabetes mellitus and that their combination with pharmacological therapy yields additional benefit. These findings support a comprehensive, multidisciplinary approach to diabetes management that addresses both biological and behavioral determinants of disease, while also underscoring the need for high-quality, long-term evidence to guide optimal integration of treatment strategies.

CONCLUSION

This systematic review and meta-analysis demonstrates that structured lifestyle interventions produce clinically meaningful improvements in glycemic control among adults with type 2 diabetes mellitus, and that the addition of pharmacological therapy yields further incremental benefit. The pooled evidence indicates that lifestyle modification remains a foundational component of diabetes management, while integrated lifestyle–pharmacological approaches offer superior short- to medium-term glycemic outcomes compared with single-modality strategies. Although the strength of evidence supports the effectiveness of combined interventions, limitations related to heterogeneity, adherence, and limited long-term follow-up warrant cautious interpretation. Future research should focus on large-scale, long-duration trials and real-world implementation studies to define optimal integration strategies, sustainability, and cost-effectiveness across diverse healthcare settings.

REFERENCES

1. Zuckerman Levin N, Cohen M, Phillip M, Tenenbaum A, Koren I, Tenenbaum-Rakover Y, et al. Youth-onset type 2 diabetes in Israel: a national cohort. *Pediatr Diabetes*. 2022;23(6):649–59.
2. Yang J, Yang H, Wang Z, Wang X, Wang Y, Yu X, et al. Self-management among type 2 diabetes patients via the WeChat application: a systematic review and meta-analysis. *J Clin Pharm Ther*. 2021;46(1):4–16.
3. Shiju R, Akhil A, Thankachan S, Tuomilehto J, Al Arouj M, Bennakhi A. Safety assessment of glucose-lowering drugs and importance of structured education during Ramadan: a systematic review and meta-analysis. *J Diabetes Res*. 2022;2022:3846253.
4. Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. *World J Diabetes*. 2016;7(17):354–95.
5. Trief PM, Kalichman SC, Wang D, Drews KL, Anderson BJ, Bulger JD, et al. Medication adherence in young adults with youth-onset type 2 diabetes: iCount, an observational study. *Diabetes Res Clin Pract*. 2022;184:109216.
6. Zhao T, Yang Q, Feuerbacher JF, Yu B, Brinkmann C, Cheng S, et al. Effects of exercise, metformin and their combination on glucose metabolism in individuals with abnormal glycaemic control: a systematic review and network meta-analysis. *Br J Sports Med*. 2024;58(23):1452–60.
7. Hamasaki H. The effects of mindfulness on glycemic control in people with diabetes: an overview of systematic reviews and meta-analyses. *Medicines*. 2023;10(9):53.
8. O'Donoghue G, O'Sullivan C, Corridan I, Daly J, Finn R, Melvin K, et al. Lifestyle interventions to improve glycemic control in adults with type 2 diabetes living in low- and middle-income countries: a systematic review and meta-analysis. *Int J Environ Res Public Health*. 2021;18(12):6273.
9. Ribeiro AKPL, Carvalho JPR, Bento-Torres NVO. Physical exercise as treatment for adults with type 2 diabetes: a rapid review. *Front Endocrinol (Lausanne)*. 2023;14:1174322.
10. Franquez RT, Souza IM, Bergamaschi C. Interventions for depression and anxiety among people with diabetes mellitus: review of systematic reviews. *PLoS One*. 2023;18:e0281376.
11. Mishu MP, Uphoff E, Aslam F, Philip S, Wright J, Tirbhowan N, et al. Interventions for preventing type 2 diabetes in adults with mental disorders in low- and middle-income countries. *Cochrane Database Syst Rev*. 2021;2:CD013281.
12. Cashmore BA, Cooper TE, Evangelidis NM, Green SC, Lopez-Vargas P, Tunnicliffe DJ. Education programmes for people with chronic kidney disease and diabetes. *Cochrane Database Syst Rev*. 2024;8:CD007374.